4.2 Connection for Power Supply
The basics and details regarding the design of the power supply itself lie beyond the scope of these guidelines. For more detailed information about this subject, see the application notes mentioned at the beginning of this section.
A decoupling capacitor should be placed close to the microcontroller for each supply pin pair (VDD, AVDD or other power supply pin and its corresponding GND pin). If you place the decoupling capacitor too far away from the microcontroller, you risk creating a high current loop that will result in increased noise and increased radiated emission.
Each supply pin pair (power input pin and ground pin) must have separate decoupling capacitors.
It is recommended to place the decoupling capacitor on the same side of the PCB as the microcontroller. If space does not allow it, the decoupling capacitor may be placed on the other side through a via, but make sure the distance to the supply pin is kept as short as possible.
If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the decoupling capacitor described above. Place this second capacitor next to the primary decoupling capacitor.
On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.
As mentioned at the beginning of this section, all values used in examples are typical values. The actual design may require other values.