2.1.2 Calculating Power Dissipation
The following table lists the standby current values.
Device | Temperature | ICCA | ICCDA | ICCBANK | ICCPLL | ICCCP1 | IIH, IIL, IOZ2 | Units | ||
---|---|---|---|---|---|---|---|---|---|---|
Standby Current (Core) | Standby Current, Differential I/O | Standby Current per I/O Bank | Standby Current per PLL | Standby Current, Charge Pump | ||||||
2.5V VCCI | 3.3V VCCI | Active | Bypassed Mode | |||||||
AX125 | Typical at 25 °C | 1.5 | 1.5 | 0.2 | 0.3 | 0.2 | 0.3 | 0.01 | ±0.01 | mA |
70 °C | 15 | 6 | 0.5 | 0.75 | 1 | 0.4 | 0.01 | ±0.01 | mA | |
85 °C | 25 | 6 | 0.6 | 0.8 | 1 | 0.4 | 0.2 | ±0.01 | mA | |
125 °C | 50 | 8 | 1 | 1.5 | 2 | 0.4 | 0.5 | ±0.01 | mA | |
AX250 | Typical at 25 °C | 1.5 | 1.4 | 0.25 | 0.4 | 0.2 | 0.3 | 0.01 | ±0.01 | mA |
70 °C | 30 | 7 | 0.8 | 0.9 | 1 | 0.4 | 0.01 | ±0.01 | mA | |
85 °C | 40 | 7 | 0.8 | 1 | 1 | 0.4 | 0.2 | ±0.01 | mA | |
125 °C | 70 | 9 | 1.3 | 1.8 | 2 | 0.4 | 0.5 | ±0.01 | mA | |
AX500 | Typical at 25 °C | 5 | 1.4 | 0.4 | 0.75 | 0.2 | 0.3 | 0.01 | ±0.01 | mA |
70 °C | 60 | 7 | 1 | 1.5 | 1 | 0.4 | 0.01 | ±0.01 | mA | |
85 °C | 80 | 7 | 1 | 1.9 | 1 | 0.4 | 0.2 | ±0.01 | mA | |
125 °C | 180 | 9 | 1.75 | 2.5 | 1.5 | 0.4 | 0.5 | ±0.01 | mA | |
AX1000 | Typical at 25 °C | 7.5 | 1.5 | 0.5 | 1.25 | 0.2 | 0.3 | 0.01 | ±0.01 | mA |
70 °C | 80 | 8 | 1.5 | 3 | 1 | 0.4 | 0.01 | ±0.01 | mA | |
85 °C | 120 | 8 | 1.5 | 3.4 | 1 | 0.4 | 0.2 | ±0.01 | mA | |
125 °C | 200 | 10 | 3 | 4 | 1.5 | 0.4 | 0.5 | ±0.01 | mA | |
AX2000 | Typical at 25 °C | 20 | 1.6 | 0.7 | 1.5 | 0.2 | 0.3 | 0.01 | ±0.01 | mA |
70 °C | 160 | 10 | 2 | 7 | 1 | 0.4 | 0.01 | ±0.01 | mA | |
85 °C | 200 | 10 | 3 | 8 | 1 | 0.4 | 0.2 | ±0.01 | mA | |
125 °C | 500 | 15 | 4 | 10 | 1.5 | 0.4 | 0.5 | ±0.01 | mA |
Note:
- ICCCP Active is the ICCDA or the Internal Charge Pump current. ICCCP Bypassed mode is the External Charge Pump current IIH (VPUMP pin).
- IIH, IIL, or IOZ values are measured with inputs at the same level as VCCI for IIH and GND for IIL and IOZ.
The following table lists the default values (CLOAD, VCCI, PLOAD, P10, and PI/O) of I/O standard.
I/O Standard | CLOAD (pF) | VCCI (V) | PLOAD (mw/MHz) | P10 (mw/MHz) | PI/O (mW/MHz)1 |
---|---|---|---|---|---|
Single-Ended without VREF | |||||
LVTTL 24 mA High Slew | 35 | 3.3 | 381.2 | 267.5 | 648.7 |
LVTTL 16 mA High Slew | 35 | 3.3 | 381.2 | 225.1 | 606.3 |
LVTTL 12 mA High Slew | 35 | 3.3 | 381.2 | 165.9 | 547.1 |
LVTTL 8 mA High Slew | 35 | 3.3 | 381.2 | 130.3 | 511.5 |
LVTTL 24 mA Low Slew | 35 | 3.3 | 381.2 | 169.2 | 550.4 |
LVTTL 16 mA Low Slew | 35 | 3.3 | 381.2 | 150.8 | 532.0 |
LVTTL 12 mA Low Slew | 35 | 3.3 | 381.2 | 138.6 | 519.8 |
LVTTL 8 mA Low Slew | 35 | 3.3 | 381.2 | 118.7 | 499.9 |
LVCMOS—25 | 35 | 2.5 | 218.8 | 148.0 | 366.8 |
LVCMOS—18 | 35 | 1.8 | 113.4 | 73.4 | 186.8 |
LVCMOS—15 (JESD8-11) | 35 | 1.5 | 78.8 | 49.5 | 128.3 |
PCI | 10 | 3.3 | 108.9 | 218.5 | 327.4 |
PCI-X | 10 | 3.3 | 108.9 | 162.9 | 271.8 |
Single-Ended with VREF | |||||
HSTL-I | 20 | 1.5 | — | 40.9 | 40.9 |
SSTL2-I | 30 | 2.5 | — | 171.2 | 171.2 |
SSTL2-II | 30 | 2.5 | — | 147.8 | 147.8 |
SSTL3-I | 30 | 3.3 | — | 327.2 | 327.2 |
SSTL3-II | 30 | 3.3 | — | 288.4 | 288.4 |
GTLP—25 | 10 | 2.5 | — | 61.5 | 61.5 |
GTLP—33 | 10 | 3.3 | — | 68.5 | 68.5 |
Differential | |||||
LVPECL—33 | N/A | 3.3 | — | 260.6 | 260.6 |
LVDS—25 | N/A | 2.5 | — | 145.8 | 145.8 |
Note:
- PI/O = P10 + CLOAD × VCCI2
The following table lists the different components contributing to the total power consumption in axcelerator devices.
Component | Definition | Device Specific Value (in μW/MHz) | ||||
---|---|---|---|---|---|---|
AX125 | AX250 | AX500 | AX1000 | AX2000 | ||
P1 | Core tile HCLK power component | 33 | 49 | 71 | 130 | 216 |
P2 | R-cell power component | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
P3 | HCLK signal power dissipation | 4.5 | 4.5 | 9 | 13.5 | 18 |
P4 | Core tile RCLK power component | 33 | 49 | 71 | 130 | 216 |
P5 | R-cell power component | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 |
P6 | RCLK signal power dissipation | 6.5 | 6.5 | 13 | 19.5 | 26 |
P7 | Power dissipation due to the switching activity on the R-cell | 1.6 | 1.6 | 1.6 | 1.6 | 1.6 |
P8 | Power dissipation due to the switching activity on the C-cell | 1.4 | 1.4 | 1.4 | 1.4 | 1.4 |
P9 | Power component associated with the input voltage | 10 | 10 | 10 | 10 | 10 |
P10 | Power component associated with the output voltage | See Package Pin Assignments | ||||
P11 | Power component associated with the read operation in the RAM block | 25 | 25 | 25 | 25 | 25 |
P12 | Power component associated with the write operation in the RAM block | 30 | 30 | 30 | 30 | 30 |
P13 | Core PLL power component | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
Power Dissipation is calculated using the following equations.
- Ptotal = Pdc + Pac
- Pdc = ICCA × VCCA
- Pac = PHCLK + PCLK + PR-cells + PC-cells + Pinputs + Poutputs + Pmemory + PPLL
- PHCLK = (P1 + P2 × s + P3 × sqrt[s]) × Fs
- s = the number of R-cells clocked by this clock
- Fs = the clock frequency
- PCLK = (P4 + P5 × s + P6 × sqrt[s]) × Fs
- s = the number of R-cells clocked by this clock
- Fs = the clock frequency
- PR-cells = P7 × ms × Fs
- ms = the number of R-cells switching at each Fs cycle
- Fs = the clock frequency
- PC-cells = P8 × mc × Fs
- Fs = the clock frequency
- mc = the number of C-cells switching at each Fs cycle
- Pinputs = P9 × pi × Fpi
- pi = the number of inputs
- Fpi = the average input frequency
- Poutputs = PI/O × po × Fpo
- Cload = the output load (technology dependent)
- VCCI = the output voltage (technology dependent)
- po = the number of outputs
- Fpo = the average output frequency
- Pmemory = P11 × Nblock × FRCLK + P12 × Nblock × FWCLK
- Nblock = the number of RAM/FIFO blocks (1 block = 4k)
- FRCLK = the read-clock frequency of the memory
- FWCLK = the write-clock frequency of the memory
- PPLL = P13 × FCLK
- FRefCLK = the clock frequency of the clock input of the PLL
- FCLK = the clock frequency of the first clock output of the PLL