3.2.19.2 Finding the Error Location Polynomial Sigma(x)
The sample code below gives a Berlekamp iterative procedure for finding the value of the error location polynomial.
The input of the procedure is the si[] table defined in the remainder substitution procedure.
The output of the procedure is the error location polynomial named smu (sigma mu). The polynomial coefficients belong to the field. The smu[NB_ERROR+1][] is a table that contains all these coefficients.
NB_ERROR_MAX defines the maximum value of the error correcting capability.
NB_ERROR defines the error correcting capability selected at encoding/decoding time.
NB_FIELD_ELEMENTS defines the number of elements in the field.
int get_sigma()
{
int i;
int j;
int k;
/* mu */
int mu[NB_ERROR_MAX+2];
/* sigma ro */
int sro[2*NB_ERROR_MAX+1];
/* discrepancy */
int dmu[NB_ERROR_MAX+2];
/* delta order */
int delta[NB_ERROR_MAX+2];
/* index of largest delta */
int ro;
int largest;
int diff;
/* */
/* First Row */
/* */
/* Mu */
mu[0] = -1; /* Actually -1/2 */
/* Sigma(x) set to 1 */
for (i = 0; i < (2*NB_ERROR_MAX+1); i++)
smu[0][i] = 0;
smu[0][0] = 1;
/* discrepancy set to 1 */
dmu[0] = 1;
/* polynom order set to 0 */
lmu[0] = 0;
/* delta set to -1 */
delta[0] = (mu[0] * 2 - lmu[0]) >> 1;
/* */
/* Second Row */
/* */
/* Mu */
mu[1] = 0;
/* Sigma(x) set to 1 */
for (i = 0; i < (2*NB_ERROR_MAX+1); i++)
smu[1][i] = 0;
smu[1][0] = 1;
/* discrepancy set to Syndrome 1 */
dmu[1] = si[1];
/* polynom order set to 0 */
lmu[1] = 0;
/* delta set to 0 */
delta[1] = (mu[1] * 2 - lmu[1])>> 1;
for (i=1; i <= NB_ERROR; i++)
{
mu[i+1] = i << 1;
/*************************************************/
/* */
/* */
/* Compute Sigma (Mu+1) */
/* And L(mu) */
/* check if discrepancy is set to 0 */
if (dmu[i] == 0)
{
/* copy polynom */
for (j=0; j<2*NB_ERROR_MAX+1; j++)
{
smu[i+1][j] =
smu[i][j];
}
/* copy previous polynom order to the next */
lmu[i+1] = lmu[i];
}
else
{
ro = 0;
largest = -1;
/* find largest delta with dmu != 0 */
for (j=0; j<i; j++)
{
if (dmu[j])
{
if (delta[j] > largest)
{
largest = delta[j];
ro = j;
}
}
}
/* initialize signal ro */
for (k = 0; k < 2*NB_ERROR_MAX+1; k ++)
{
sro[k] = 0;
}
/* compute difference */
diff = (mu[i] - mu[ro]);
/* compute X ^ (2(mu-ro)) */
for (k = 0; k < (2*NB_ERROR_MAX+1); k ++)
{
sro[k+diff] = smu[ro][k];
}
/* multiply by dmu * dmu[ro]^-1 */
for (k = 0; k < 2*NB_ERROR_MAX+1; k ++)
{
/* dmu[ro] is not equal to zero by definition */
/* check that operand are different from 0 */
if (sro[k] && dmu[i])
{
/* galois inverse */
sro[k] = gf_antilog[(gf_log[dmu[i]] + (NB_FIELD_ELEMENTS-gf_log[dmu[ro]]) + gf_log[sro[k]]) %
NB_FIELD_ELEMENTS];
}
}
/* multiply by dmu * dmu[ro]^-1 */
for (k = 0; k < 2*NB_ERROR_MAX+1; k++)
{
smu[i+1][k] = smu[i][k] ^ sro[k];
if (smu[i+1][k])
{
/* find the order of the polynom */
lmu[i+1] = k << 1;
}
}
}
/* */
/* */
/* End Compute Sigma (Mu+1) */
/* And L(mu) */
/*************************************************/
/* In either case compute delta */
delta[i+1] = (mu[i+1] * 2 - lmu[i+1]) >> 1;
/* In either case compute the discrepancy */
for (k = 0 ; k <= (lmu[i+1]>>1); k++)
{
if (k == 0)
dmu[i+1] = si[2*(i-1)+3];
/* check if one operand of the multiplier is null, its index is -1 */
else if (smu[i+1][k] && si[2*(i-1)+3-k])
dmu[i+1] = gf_antilog[(gf_log[smu[i+1][k]] + gf_log[si[2*(i-1)+3-k]])%nn] ^ dmu[i+1];
}
}
return 0;
}