1.18 TCP/IP Web NET Server NVM MPFS

The Web Net Server Non-volatile Memory (NVM) MPFS configuration demonstrates creating an HTTP web server on a Microchip evaluation board. The Non-Volatile Memory (NVM) Microchip Proprietary File System (MPFS) is used for storing the web pages in the internal Flash.

This demonstration uses the HTTPNET server module that supports encrypted communication with NET_PRES layer and third-party TLS service provider (like wolfSSL).

TCP/IP Web NET Server NVM MPFS MCC Configuration

The following Project Graph diagram shows the Harmony components included in this application demonstration.

  • MCC is launched by selecting Tools > Embedded > MPLAB® Code Configurator from the MPLAB X IDE and after opening the project, TCP/IP demo project is ready to be configured and regenerated.

  • TCP/IP Root Layer Project Graph

    The root layer project shows that UART2 peripheral is selected to do read and write operation for TCP/IP commands.

    This is the basic configuration with SYS_CONSOLE, SYS_DEBUG and SYS_COMMAND modules. These modules are required for TCP/IP command execution.

    tcpip_same70_v71_project

    WolfSSL component is selected for secure connection which supports TLS and WolfSSL-Crypto component is selected for MD5 and SHA authentication.

    The file system component is required to select MPFS module. This is the below snapshot for the FS configuration.

    tcpip_same70_v71_project

    FreeRTOS component is required for RTOS application. For bare-metal (non-RTOS) FreeRTOS component should not be selected.

    TCP sockets calculate the ISN using the wolfSSL crypto library.

  • TCP/IP Configuration

    1. SAM E70 Xplained Ultra

      tcpip_same70_v71_project

    2. SAM V71 Xplained Ultra

      tcpip_same70_v71_project

  • TCP/IP Required Application

    TCP/IP demo use these application module components for this demo.

    Announce module to discover the Microchip devices within a local network.

    DHCP Client module to discover the IPv4 address from the nearest DHCP Server.

    DNS Client provides DNS resolution capabilities to the stack.

    HTTPNET Server module is selected to run the web_server for the port number 443.

    • By default Enable MPFS upload via HTTP is selected. This is helpful When external EEPROM or serial Flash is used for storage, the option to upload the newly created image to the board is available.

    NBNS NetBIOS Name Service protocol associates host names with IP addresses. This assign of human-name host names to access boards on the same subnet.

    SMTP CLIENT let applications send e-mails to any recipient worldwide.

    SNTP Simple Network Time Protocol updates its internal time periodically using a pool of public global time servers.

  • TCPIP Data Link Layer

    Internal ethernet driver(gmac) is enabled with the external LAN8740 PHY driver library for SAME70 demonstartion.

    For SAM V71 demonstration , LAN8061 PHY driver ia selcted along with GMAC Internal ethernet driver.

    The MIIM Driver supports asynchronous read/write and scan operations for accessing the external PHY registers and notification when MIIM operations have completed.

TCP/IP Web Net Server NVM MPFS Hardware Configuration

This is the section describes the hardware configuration for ATSAM E70/V71 Xplained Ultra Evaluation Kit and one can be used for the respective application demonstration.

  1. This section describes the required default hardware configuration use SAM E70 Xplained Ultra Evaluation Kit

    • Ensure ERASE jumper is Open.

    • Open the J805 Jumper

    • Refer to the SAM E70 Xplained Ultra User Guide

      required_hardware
    • Insert the LAN8740 PHY daughter board on the ETHERNET PHY MODULE header.

    • Connect the micro USB cable from the computer to the DEBUG USB connector on the SAM E70 Xplained Ultra Evaluation Kit

    • Establish a connection between the router/switch with the SAM E70 Xplained Ultra Evaluation Kit through the RJ45 connector

      required_hardware
  2. This section describes the required default hardware configuration use SAM V71 Xplained Ultra Evaluation Kit

    • No hardware related configuration or jumper setting changes are necessary

    • Ensure ERASE jumper is Open

    • Refer to the SAM V71 Xplained Ultra User Guide

      required_hardware
    • Connect the micro USB cable from the computer to the DEBUG USB connector on the SAM V71 Xplained Ultra Evaluation Kit

    • Establish a connection between the router/switch with the SAM V71 Xplained Ultra Evaluation Kit through the RJ45 connector

      required_hardware

TCP/IP Web NET Server NVM MPFS Running Application

The HTTP net server module uses Microchip Proprietary File System (MPFS) to read web pages from the Non-Volatile Memory (NVM). The Non-Volatile Memory (NVM) is one of the memory media is used to store the web server pages.

This table list the name and location of the MPLAB X IDE project folder for the demonstration.

Project NameTarget DeviceTarget Development BoardDescription
sam_e70_xult.XATSAME70Q21BSAME70 Xplained Ultra + LAN8740 PHY Daughter boardDemonstrates the TCP/IP Web net Server NVM MPFS on a development board with ATSAME70Q21B device and LAN8740 PHY daughter board. This is a bare-metal (non-RTOS) implementation.
sam_e70_xult_freertos.XATSAME70Q21BSAME70 Xplained Ultra + LAN8740 PHY Daughter boardDemonstrates the TCP/IP Web net Server NVM MPFS on development board with ATSAME70Q21B device and LAN8740 PHY daughter board. This implementation is based on FreeRTOS.
sam_v71_xult.XATSAMV71Q21BSAMV71 Xplained UltraDemonstrates the web net server NVM MPFS on development board with ATSAME70Q21B device and KSZ8061 PHY daughter board. This implementation is based on Bare Metal (non-RTOS).
sam_v71_xult_freertos.XATSAMV71Q21BSAMV71 Xplained UltraDemonstrates the web net server NVM MPFS on development board with ATSAME70Q21B device and KSZ8061 PHY daughter board. This implementation is based on Freertos.

Running Demonstration Steps

  1. Build and download the demonstration project on the target board.

  2. If the board has a UART connection:

    1. A virtual COM port will be detected on the computer, when the USB cable is connected to USB-UART connector.

    2. Open a standard terminal application on the computer (like Hyper-terminal or Tera Term) and configure the virtual COM port.

    3. Set the serial baud rate to 115200 baud in the terminal application.

    4. See that the initialization prints on the serial port terminal.

    5. When the DHCP client is enabled in the demonstration, wait for the DHCP server to assign an IP address for the development board. This will be printed on the serial port terminal.

      • Alternatively: Use the Announce service or ping to get the IP address of the board.

      • Run tcpip_discoverer.jar to discover the IPv4 and IPv6 address for the board.

  3. HTTP Server Output -

    An HTTP server is hosted by the demonstration application. Open a web browser and direct it to the board running the HTTP server by typing the URL in the address bar (for example, https://mchpboard_c), and then pressing Enter.

    tcpip_web_net_server_project

    The demonstration application features following:

    1. Dynamic Variables and Real-time Hardware Control - On the Overview page the LEDs can be clicked to toggle the LEDs on the Microchip hardware development board. The SWITCHes on the Microchip hardware development board can be pressed to toggle the Buttons on the web page. The dynamic variables can be updated in real-time on the HTTP server.

    2. Form Processing - Input can be handled from the client by using the GET and POST methods (this functionality controls the on-board LEDs and is operational only on the Explorer 16 Development Board)

    3. Authentication - Shows an example of the commonly used restricted access feature

    4. Cookies - Shows an example of storing small text strings on the client side

    5. Server Side Includes - An example of how SSI can be used to support dynamic content

    6. File Uploads - Shows an example of a file upload using the POST method. The HTTP server can_accept_a user-defined MPFS/MPFS2 image file for web pages.

    7. Send E-mail - Shows simple SMTP POST methods

    8. Dynamic DNS - Exercises Dynamic DNS capabilities

    9. Network Configuration - The MAC address, host name, and IP address of the evaluation kit can be viewed in the Network Configuration page and some configurations can be updated

    10. MPFS Upload - A new set of web pages can be uploaded to the web server using this feature, which is accessed through http://mchpboard_c/mpfsupload

    Notes:

    • For the LED and SWITCH functionality portion of the demonstration, configure the GPIOs connected to LEDs and Switches on Microchip hardware development board, through the Pin Configuration manager in MPLAB® Code Configurator (MCC).

    • The location of the MPFS image is fixed at the beginning of the Flash page specified by DRV_MEMORY_DEVICE_START_ADDRESS. The size of the MPFS upload is limited to DRV_MEMORY_DEVICE_MEDIA_SIZE in the demonstration. The HTTP File Upload functionality has to be enabled when the project is generated.