3.3.9.2 External 32 kHz Crystal Oscillator (XOSC32K) Electrical Specifications

Table 3-14. 32.768 kHz Crystal Oscillator (XOSC32K) AC Electrical Specifications
Standard Operating Conditions: VDDIO = AVDD = 1.8V to 5.5V (unless otherwise stated)

Operating temperature: -40°C ≤ TA ≤ +125°C for extended temperature

Param. No.SymbolCharacteristicsMin.Typ.Max.UnitsConditions
XOSC32_1fOSC_XOSC32XOSC32 crystal oscillator frequency32.768kHz
XOSC32_3CXIN32XOSC32 XIN32 parasitic pin capacitance3.5pF
XOSC32_5CXOUT32XOSC32 XOUT32 parasitic pin capacitance3.6pF
XOSC32_11CLOAD_X32 (2)32.768 kHz crystal load capacitance9pFXOSC32KCTRL.LPMODE = 1

XOSC32KCTRL.XTALEN = 1

XOSC32KCTRL.ENABLE = 1
XOSC32_1212.5pFXOSC32KCTRL.LPMODE = 0

XOSC32KCTRL.XTALEN = 1

XOSC32KCTRL.ENABLE = 1
XOSC32_13ESRX3232.768 kHz crystal ESR50kΩXOSC32KCTRL.LPMODE = 1

XOSC32KCTRL.XTALEN = 1

XOSC32KCTRL.ENABLE = 1

XOSC32_14100kΩXOSC32KCTRL.LPMODE = 0

XOSC32KCTRL.XTALEN = 1

XOSC32KCTRL.ENABLE = 1
XOSC32_15TOSC32TOSC32 = 1/fOSC_XOSC3230.5176µs

See parameter XOSC32_1 for FOSC_XOSC32 value

XOSC32_17XOSC32ST(1)XOSC32 Crystal Star-up Time 51500(3)TOSCXOSC32KCTRL.LPMODE = 1

Crystal stabilization time only not oscillator ready

XOSC32_185800(3)TOSCXOSC32KCTRL.LPMODE = 0

Crystal stabilization time only not oscillator ready

XOSC32_19fOSC_XCLK32Ext clock oscillator input freq (XIN32 pin)32.768kHzXOSC32KCTRL.XTALEN = 0
XOSC32_21XCLK32DCExt clock oscillator duty cycle50%XOSC32KCTRL.XTALEN = 0
XOSC32_23XCLK32FSTXIN32 clock fail safe time-out period4 x TOSC32(4)µs
Note:
  1. This is for guidance only. A major component of crystal start-up time is determined by the parasitics of the third-party crystal manufacturer, which are outside the scope of this specification. If this is a major concern, the customer would need to characterize this based on their design choices.
  2. CRYSTAL LOAD CAPACITOR CALCULATION GIVEN:
    • Standard PCB trace capacitance = 1.5 pF per 12.5 mm (0.5 inches) (i.e., PCB standard trace width = 0.175 mm, height = 36 μm, thickness = 113 μm)
    • Using these measurements, a typical crystal PCB capacitance is approximately 2.5 pF with a PCB layout keeping the crystal traces as short as possible
    • For CXIN and CXOUT within 4 pF of each other, assume CXTAL_EFF = ((CXIN + CXOUT)/2)
    Note: Averaging CXIN and CXOUT will affect the final calculated CLOAD value by less than the tolerance of the capacitor selection.

    EQUATION 1:

    MFG CLOAD spec = {( [CXIN + C1] x [CXOUT + C2] )/[CXIN + C1 + C2 + CXOUT] } + estimated oscillator PCB stray capacitance

    Assuming C1 = C2 and CXIN is approximately equal to CXOUT, the formula can be further simplified and restated to solve for C1 and C2 as follows:

    EQUATION 2 (Simplified Equation 1):

    C1 = C2 = ((2 x MFG CLOAD spec) - CXTAL_EFF - (2 x PCB capacitance))

    EXAMPLE ONLY:

    • Crystal MFG CLOAD spec = 12 pF
    • PCB crystal trace capacitance = 2.5 pF
    • CXIN pin = 6.5 pF
    • CXOUT pin = 4.5 pF

    CXTAL_EFF = ((CXIN + CXOUT)/2)

    CXTAL_EFF = ((6.5 + 4.5)/2) = 5.5 pF

    C1 = C2 = ((2 x MFG CLOAD spec) - CXTAL_EFF - (2 x PCB capacitance))

    C1 = C2 = (24 - 5.5 - (2 x 2.5))

    C1 = C2 = (24 - 5.5 - 5)

    C1 = C2 = 13.5 pF (always rounded down)

    C1 = C2 = 13 pF (i.e., for hypothetical example crystal external load capacitors)

    User C1 = C2 = 13 pF ≤ CLOAD_X32 (max) spec

    Figure 3-1. XTAL
  3. User selectable in XOSC32KCTRL.CSUT[1:0].
  4. Period of four safe clocks, monitored by the Clock Failure Detection system, watching for XOSC32K clock activity.