6.2 DC/AC Characteristics
(Submit Feedback)All parameters valid for 4.9V ≤ VVS ≤ 32V; all voltages are defined with respect to ground; Non-Automotive, E variant: –40°C ≤ TJ ≤ 125°C; Grade 0, H Variant: –40°C ≤ TJ ≤ 150°C; Typical values are given at VVS = 13V, TJ = 25°C; unless otherwise noted. | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Parameters | Symbol | Pin/s | Min. | Typ. | Max. | Unit | Conditions | Type | |||
VS, VDH | |||||||||||
Supply Voltage Threshold for Power-On Detection | VVS_PWRON | VS | 4.2 | — | 4.55 | V | VS rising | A | |||
Supply Voltage Threshold for Power OFF Detection | VVS_PWROFF | VS | 2.8 | — | 3 | V | VVS falling | A | |||
VS Undervoltage Detection Clear | VVS_UV_Clear | VS | 4.6 | — | 4.9 | V | VVS rising | A | |||
VS Undervoltage Detection Set | VVS_UV_Set | VS |
4.2 |
— |
4.55 | V | VVS falling | A | |||
VS + VDH Quiescent Current in Deep Sleep Mode | IVS_DSLP | VS |
— |
8 |
12 | µA | Deep Sleep mode (WAKE wake up only), overvoltage detection OFF, TJ < 25°C, VVS < 25V | A | |||
— | — | 20 | µA | Deep Sleep mode (WAKE wake up only), overvoltage detection OFF, No temperature limitation, VVS < 25V | A | ||||||
VS + VDH Current in Sleep Mode | IVS_SLP | VS | — | 15 | 35 | µA | Sleep mode, (LIN wake-up and WAKE wake up), overvoltage detection OFF, TJ < 25°C, VVS < 25V, See Figure 7-8 | A | |||
VS + VDH Current in Sleep Mode with Watchdog activated |
IVS_SLP_WD |
VS |
— |
35 |
— |
µA |
Sleep mode, (Watchdog enabled in Sleep mode (WDSLP=1)), overvoltage detection OFF, TJ < 25°C, VVS < 25V |
C | |||
VS Current in Standby Mode | IVS_STB | VS | — | — | 80 | µA | Standby mode, TJ < 25°C, LDO active, VVS < 25V | A | |||
VS Current in Normal Mode with LIN Recessive | IVS_NORM_REC | VS | — | 4.9 | 5.1 | mA | Normal mode, LIN recessive, GDU Standby, 7V < VVS < 18V | A | |||
VS Current in Normal Mode with LIN Dominant | IVS_NORM_DOM | VS | — | 5.3 | 6.0 | mA | Normal mode, LIN dominant, GDU Standby, 7V < VVS < 18V | A | |||
VDH Current in Normal Mode Without Gate Driving | IVDH_GDU_STB | VDH | — | — | 8.2 | mA | Normal mode, GDU Standby mode, 4.2V < VVDH < 12V | A | |||
VDH Overvoltage Detection Set | VVDH_OV_Set | VDH | 32.5 | — | 34.7 | V | VVDH Rising | A | |||
VDH Overvoltage Detection Clear | VVDH_OV_Clr | VDH | 32 | — | 34 | V | VVDH Falling | A | |||
VDH Current in Standby Mode | IVDH_STB | VDH | — | 1 | — | µA | LIN wake-up and WAKE wake up, overvoltage detection OFF | A | |||
VDD1 5V: ATA6847-5050, ATA6847-5033 | |||||||||||
Output Voltage | VVDD1nom | VDD1 | 4.9 | 5 | 5.1 | V | VVS > 5.5V (IVDD1 = 0 to -100 mA DC) | A | |||
Output Voltage at Low VS | VVDD1low | VDD1 | VVS-VDx | — | 5.1 | V | 3V < VVS < 5.35V, (IVDD1 = 0 to 100 mA) | A | |||
VD1 | VDD1 | — | — | 100 | mV | 3V < VVS < 5.35V, IVDD1 = 20 mA | A | ||||
VD2 | VDD1 | — | — | 250 | mV | 3V < VVS < 5.35V, IVDD1 = 50 mA | A | ||||
VD3 | VDD1 | — | — | 500 | mV | 3V < VVS < 5.35V, IVDD1 = 100 mA | A | ||||
Line Regulation Maximum | VVDD1line | VDD1 | — | — | 0.2 | % | 5.5V < VVS < 40V, 1mA < IVDD1 < 100 mA | A | |||
Load Regulation Maximum | VVDD1load | VDD1 | — | — | 1 | % | 5.5V < VVS < 40V, 5 mA < IVDD1 < 100 mA | A | |||
Power Supply Ripple Reject | PSRR | VDD1 | 40 | 60 | — | dB | 1 VPP @100 Hz, 10 kHz, 100 kHz; IVDD1 = 10 mA, 50 mA, 100 mA; VVS = 13.8V | D | |||
Output Current Limitation | IVDD1lim | VDD1 | 100 | — | 145 | mA | VVS = 4.9V | A | |||
Phase Margin | PM | VDD1 | 35 | — | — | Deg. | VVS > 5.5V, IVDD1 < 100 mA | D | |||
Load Capacity | CVDD1 | VDD1 | 1.87 | 2.2 | — | µF | MLC capacitor | D | |||
Ramp-up Time | tVDD1_startup | VDD1 | — | — | 0.5 | ms | VVS > 5.5V, from enable regulator to VVDD1 = 99.5% stable value, CVDD1 = 2.7-3.9 µF, IVDD1 = 25 mA | C | |||
VDD1 Undervoltage Set Threshold | VVDD1_UV_Set | VDD1 | 4.5 | — | 4.7 | V | VVDD1 falling | A | |||
VDD1 Undervoltage Clear Threshold | VVDD1_UV_Clear | VDD1 | 4.6 | — | 4.8 | V | VVDD1 rising | A | |||
VDD1 Undervoltage Hysteresis | VVDD1_UV_HYS | VDD1 | 0.08 | 0.1 | 0.12 | V | C | ||||
VDD1 IO Undervoltage Set | VVDD1_UV_IO_Set | VDD1 | 2.4 | — | 2.7 | V | VVDD1 falling | A | |||
VDD1 IO Undervoltage Clear | VVDD1_UV_IO_Clear | VDD1 | 2.5 | — | 2.8 | V | VVDD1 rising | A | |||
VDD1 IO Undervoltage Hysteresis | VVDD1_UV_IO_HYS | VDD1 | 0.08 | 0.1 | 0.12 | V | C | ||||
Debouncing Time for Detecting VDD1 IO Undervoltage | tVDD1_UV_IO_deb | VDD1 | 6 | — | 54 | µs | A | ||||
Output Current Foldback Corner | IVDD1_fbcorner | VDD1 | 105 | — | 135 | mA | IC in Standby mode | A | |||
Output Current Foldback Short Circuit Current | IVDD1_fb_sc | VDD1 | — | — | 30 | mA | A | ||||
VDD1 Overvoltage Set | VVDD1_OV_Set | VDD1 | 5.5 | 5.68 | 5.85 | V | A | ||||
VDD1 Overvoltage Clear | VVDD1_OV_Clear | VDD1 | 5.45 | 5.58 | 5.75 | V | A | ||||
Debouncing Time for Detecting VDD1 Overvoltage | tVDD1_OV_deb | VDD1 | 6 | — | 54 | µs | A | ||||
Debouncing Time for Detecting VDD1 Undervoltage | tVDD1_uv_deb | VDD1 | 6 | — | 54 | µs | A | ||||
VDD1 5V Output Voltage Load Step | VVDD1loadStep | VDD1 | -2 | — | 2 | % | IVDD1 = 0 to 100 mA, IVDD1= 100 to 0 mA Loadstep transient | C | |||
VDD1 3.3V: ATA6847-3333 | |||||||||||
Output Voltage | VVDD1nom | VDD1 | 3.234 | 3.3 | 3.366 | V | VVS > 3.8V, (IVDD1 = 0 to 100 mA) | A A | |||
Output Voltage at Low VS | VVDD1low | VDD1 | VVS-VDx | — | 3.37 | V | 3V < VVS < 3.7V, (IVDD1 = 0 to 100 mA) | A | |||
VD1 | VDD1 | — | — | 100 | mV | 3V < VVS < 3.7V, IVDD1 = 20 mA | A | ||||
VD2 | VDD1 | — | — | 250 | mV | 3V < VVS <3.7V, IVDD1 = 50 mA | A | ||||
VD3 | VDD1 | — | — | 500 | mV | 3V <VVS < 3.7V, IVDD1 = 100 mA | A | ||||
Line Regulation Maximum | VVDD1line | VDD1 | — | — | 0.2 | % | 3.8V < VVS < 40V, 1 mA < IVDD1 < 100 mA | A | |||
Load Regulation Maximum | VVDD1load | VDD1 | — | — | 1 | % | 3.8V < VVS < 40V, 5 mA < IVDD1 < 100 mA | A | |||
Power Supply Ripple Reject | PSRR | VDD1 | 40 | 60 | — | dB | 1 VPP @100 Hz, 10 kHz, 100 kHz; VVS = 13.8V I VDD1 = 10 mA, 50 mA, 100 mA | D | |||
Output Current Limitation | IVDD1lim | VDD1 | 100 | — | 145 | mA | VVS = 3.2V | A | |||
Phase Margin | PM | VDD1 | 25 | — | — | Deg. | VVS > 3.8V, IVDD1 < 100 mA | D | |||
Load Capacity | CVDD1 | VDD1 | 1.87 | 2.2 | — | µF | MLC capacitor | D | |||
Ramp-up Time | tVDD1_startup | VDD1 | — | — | 0.5 | ms | VIN > 3.8V, from enable regulator to VVDD = 99.5% stable value, CVDD1 = 2.2 µF, IVDD1 = 25 mA | D | |||
VDD1 IO Undervoltage Set | VVDD1_UV_IO_Set | VDD1 | 2.4 | — | 2.7 | V | VVDD1 falling | A | |||
VDD1 IO Undervoltage Clear | VVDD1_UV_IO_Clear | VDD1 | 2.5 | — | 2.8 | V | VVDD1 rising | A | |||
VDD1 IO Undervoltage Hysteresis | VVDD1_UV_IO_HYS | VDD1 | 0.08 | 0.1 | 0.12 | V | C | ||||
Debouncing Time for Detecting VDD1 Interface Undervoltage | tVDD1_UV_IO_deb | VDD1 | 6 | — | 54 | µs | A | ||||
Output Current Foldback Corner | IVDD1_fbcorner | VDD1 | 105 | — | 135 | mA | IC in Standby mode | A | |||
Output Current Foldback Short Circuit Current | IVDD1_fb_sc | VDD1 | — | — | 30 | mA | A | ||||
VDD1 Overvoltage Set | VVDD1_OV_Set | VDD1 | 3.64 | 3.75 | 3.86 | V | A | ||||
VDD1 Overvoltage Clear | VVDD1_OV_Clear | VDD1 | 3.54 | 3.65 | 3.76 | V | A | ||||
Debouncing Time for Detecting VDD1 Overvoltage | tVDD1_OV_deb | VDD1 | 6 | — | 54 | µs | A | ||||
VDD1 3.3V Output Voltage Load Step | VVDD1loadStep | VDD1 | -2 | — | 2 | % | IVDD1 = 0 to 100 mA, IVDD1= 0 to 100 mA. Load step transient included. | C | |||
VDD2 3.3V: ATA6847-5050, and ATA6847-5033 | |||||||||||
Output Voltage | VVDD2nom | VDD2 | 3.234 | 3.3 | 3.366 | V | VVDD1 > 4.5V, (IVDD2 = 0 to 70 mA) | A | |||
Output Voltage at Low VDD2 | VVDD2low | VDD2 | VVDD1-VDx | — | 3.37 | V | VVDD1 < 4.5V, (IVDD2 = 0 to 70 mA) | A | |||
Regulator Drop Voltage at Low VDD1 | VD1 | VDD2 | — | — | 0.3 | V | IVDD2 = 20 mA | A | |||
VD2 | VDD2 | — | — | 0.6 | V | IVDD2 = 40 mA | A | ||||
VD3 | VDD2 | — | — | 1.05 | V | IVDD2 = 70mA | A | ||||
Line Regulation Maximum | VVDD2line | VDD2 | — | — | 0.2 | % | 4.5 V < VVDD1 < 5.5V, 1 mA < IVDD2 < 70 mA | C | |||
Load Regulation Maximum | VVDD2load | VDD2 | — | — | 1.0 | % | 4.5 V < VVDD1 < 5.5V, 5 mA < IVDD2 < 70 mA | A | |||
Power Supply Ripple Reject | PSRR | VDD2 | 40 | 60 | — | dB | 1 VPP @100 Hz, 10 kHz, 100 kHz; IVDD2 = 10 mA, 50 mA, 70 mA; VVDD1 = 5V | D | |||
Phase Margin | PM | VDD1 | 40 | — | — | Deg. | VVS > 4.5V, IVDD2 = 70 mA | D | |||
Output Current Limitation | IVDD2lim | VDD2 | 75 | — | 100 | mA | A | ||||
Load Capacity | CVDD2 | VDD2 | 1.87 | 2.2 | — | µF | MLC capacitor | D | |||
Ramp-up Time | tVDD2_startup | VDD2 | — | — | 0.5 | ms | VIN > 4.5V, from enable regulator to VVDD = 99.5% stable value, CVDD2 = 2.7-3.9 µF, IVDD2 = 25 mA | C | |||
VDD2 IO Undervoltage Set | VVDD2_UV_IO_Set | VDD2 | 2.4 | — | 2.7 | V | VVDD2 falling | A | |||
VDD2 IO Undervoltage Clear | VVDD2_UV_IO_Clear | VDD2 | 2.5 | — | 2.8 | V | VVDD2 rising | A | |||
VDD2 IO Undervoltage Hysteresis | VVDD2_UV_IO_HYS | VDD2 | 0.08 | 0.1 | 0.12 | V | C | ||||
Debouncing Time for Detecting VDD2 Interface Undervoltage | tVDD2_UV_IO_deb | VDD2 | 6 | — | 54 | µs | A | ||||
VDD2 Overvoltage Set | VVDD2_OV_Set | VDD2 | 3.64 | 3.75 | 3.86 | V | A | ||||
VDD2 Overvoltage Clear | VVDD2_OV_Clear | VDD2 | 3.54 | 3.65 | 3.76 | V | A | ||||
Debouncing Time for Detecting VDD2 Overvoltage | tVDD2_OV_deb | VDD2 | 6 | — | 54 | µs | A | ||||
VDD2 3.3V Output Voltage Load Step | VVDD2loadStep | VDD2 | -2 | — | 2 | % | IVDD2 = 0 to 70 mA, IVDD2 = 70 to 0 mA. Load step. | C | |||
VG Regulator (regulated charge pump) | |||||||||||
VG Output Voltage | VVG | VG | 11.5 | 12 | 12.5 | V | VVDH > VCP_STOP, IVG < 30 mA | B | |||
VG Output Voltage | VVG | VG | 7.8 | — | — | V | VVDH > 5.1V, IVG < 21 mA | A | |||
Charge Pump Start | VCP_START | VDH | 12.5 | — | 13.3 | V | VVDH falling | A | |||
Charge Pump Stop | VCP_STOP | VDH | 13 | — | 13.8 | V | VVDH rising | A | |||
Charge Pump Frequency | fCP_VG | CPN1, CPN2 | 360 | 380 | 400 | kHz | VVDH < 13V | A | |||
Output Current Limit | ILIM_VG | 35 | 60 | 85 | mA | A | |||||
Line Regulation Maximum | VVGline | VG | — | — | 0.2 | % | 13.8V ≤ VVDH < 36V, 1 mA < IVG < 30 mA | B | |||
Load Regulation Maximum | VVGload | VG | — | — | 0.5 | % | 13.8V ≤ VVDH < 36V, 5 mA < IVG < 30 mA | B | |||
Power Supply Ripple Reject | PSRR | VG | 30 | 60 | — | dB | 1 VPP @100 Hz, 10 kHz, 100 kHz; IVG = 1 mA, 10 mA, 30 mA; VVS > 13.8V | D | |||
Phase Margin | PM | VG | 35 | — | — | Deg. | VVDH ≥ 13.8V, IVDD1 < 30 mA | D | |||
VCP Charge Pump | A | ||||||||||
Charge Pump Output Voltage | VVCP | VCP | 12.2 | — | — | V | VVDH > 5.1V, VVG > 7.8V, IVCP = 10.6 mA | A | |||
Charge Pump Output Voltage | VVCP | VCP | 24 | — | — | V | VVDH > 13.8V, VVG > 11.5V, IVCP = 15 mA | B | |||
Gate Drive Unit | |||||||||||
Output Driver Source Resistance | Rsource | GH/Lx | — | — | 27 | Ω | IGHx/IGLx = 100 mA | A | |||
Output Driver Sink Resistance | Rsink | GH/Lx | — | — | 10 | Ω | IGHx/IGLx = -100 mA | A | |||
Rising Edge Propagation Delay | tdel_r | GH/Lx | — | — | 240 | ns | Cload = 0, NIHx 30% to VGHx-VSHx or ILx 70% to VGLx - V GND(ATA6847)or VGLx - VSL(ATA6847L) , reaches 10% of final VGS level (slew rate control disabled) | C | |||
Falling Edge Propagation Delay | tdel_f | GH/Lx | — | — | 240 | ns | Cload = 0, NIHx 70% to VGHx - VSHx or ILx 30% to VGLx - V GND(ATA6847)or VGLx - VSL(ATA6847L) , reaches 90% of final VGS level (slew rate control disabled) | C | |||
Propagation Delay Mismatch | tdel_mis | GHx, GLx | 0 | — | 100 | ns | Absolute high-side edge and low-side edge propagation delay mismatch | C | |||
0 | — | 50 | ns | Absolute high-side edge and low-side edge propagation delay mismatch in complementary mode | C | ||||||
Slew Rate Control | SR100 | GH/Lx | — | 100% | — | full speed | HSSRC/LSSRC = 2'b00 | A | |||
SR50 | GH/Lx | — | 50% | — | full speed | HSSRC/LSSRC = 2'b01 | A | ||||
SR25 | GH/Lx | — | 25% | — | full speed | HSSRC/LSSRC = 2'b10 | A | ||||
SR125 | GH/Lx | — | 12.50 % | — | full speed | HSSRC/LSSRC = 2'b11 | A | ||||
VGS Undervoltage Detection Clear | VVGS_UV_Clear_H | GH/Lx | 6.1 | — | 6.55 | V | Higher level selected, UVVGSLVL = 1'b1 | A | |||
VGS Undervoltage Detection Clear | VVGS_UV_Clear_L | GH/Lx | 4.6 | — | 4.9 | V | Lower level selected, UVVGSLVL = 1'b0 | A | |||
VGS Undervoltage Detection Set | VVGS_UV_Set_H | GH/Lx | 5.6 | — | 6.0 | V | Higher level selected, UVVGSLVL = 1'b1 | A | |||
VGS Undervoltage Detection Set | VVGS_UV_Set_L | GH/Lx | 4.2 | — | 4.55 | V | Lower level selected, UVVGSLVL = 1'b0 | A | |||
Short Circuit Detection Voltage Threshold Range (Drain-Source Monitoring) | VSC_TH | VDH, SHx, GND (ATA6847) or SL (ATA6847L) | See SCPCR Register | mV | Configurable via SPI | A | |||||
Short Circuit Detection Reference Voltage Accuracy (Drain-Source Monitoring) | dVSC_TH500 |
VDH, SHx, GND (ATA6847) or SL (ATA6847L) | -5% | — | 5% | — | VSC_TH ≥ 500 mV | B | |||
dVSC_TH250 |
-8% |
— |
8% | — |
VSC_TH = 250 mV | B | |||||
dVSC_TH125 | -15% | — | 15% | — | VSC_TH = 125 mV, TJ < 25°C | B | |||||
-15% | — | 25% | — | VSC_TH = 125 mV | B | ||||||
VDS Voltage Blanking Time | tVDS_Blank | GH/Lx | See GDUCR2 Register | µs | Configurable via SPI | B | |||||
VGS Undervoltage Voltage Detection Blanking Time | tVGS_UV_Blank | GH/Lx | See GDUCR2 Register | µs | Configurable via SPI | B | |||||
VGS Undervoltage Voltage Detection Blanking Time Accuracy | dtVGS_UV_Blank | GH/Lx | -10% | — | 10% | — | B | ||||
VGS Undervoltage Voltage Detection Add-on Blanking Time in GDU Standby Mode | tVGS_UV_Blank_ADO | GH/Lx | — | 2000 | — | µs | B | ||||
Current Limitation Detection Blanking Time | tOC_BT | GH/Lx | See ILIMCR Register | µs | Configurable via SPI | B | |||||
Current Limitation Detection Blanking Time Accuracy | dtOC_BT | GH/Lx | -5% | — | 5% | — | B | ||||
Edge Blanking Time | tEG_Blank | GH/Lx | See GDUCR2 Register | µs | Configurable via SPI | B | |||||
Edge Blanking Time Accuracy | dtEG_Blank | GH/Lx | -5% | — | 5% | — | B | ||||
Cross Conduction Protection Time | tCC | GH/Lx | See GDUCR1 Register | µs | Configurable via SPI | B | |||||
Cross Conduction Protection Time Accuracy | dtCC | GH/Lx | -5% | — | 5% | — | B | ||||
Adaptive Deadtime High-side ON Delay Time Range | tHON_DEL | — | See GDUCR3 Register | ns | Configurable via SPI | A | |||||
Adaptive Deadtime High-side ON Delay Time Range Accuracy | dtHON_DEL | — | -5% | — | 5% | — | A | ||||
Adaptive Deadtime Low-side ON Delay Time Range | tLON_DEL | — | See GDUCR3 Register | ns | Configurable via SPI | A | |||||
Adaptive Deadtime Low-side ON Delay Time Range Accuracy | dtLON_DEL | — | -5% | — | 5% | — | A | ||||
Adaptive Deadtime Force to Switch Delay Time | tSWTO | — | See GDUCR2 Register | ns | Configurable via SPI | A | |||||
Adaptive Deadtime Force to Switch Delay Time Accuracy | dtSWTO | — | -5% | — | 5% | — | A | ||||
Low-side Gate-Source Threshold Voltage for Low-side Gate OFF Detection | VLOOFF | GLx / SL (ATA6847L) or GND (ATA6847) | 1.6 | 1.8 | 2 | V | C | ||||
Low-side Drain-Source Threshold Voltage for High-side Gate OFF Detection | VSWTH | SHx | 1.6 | 1.8 | 2 | V | C | ||||
VDS Short Circuit Detection Delay | tVDS_DEL | — | — | — | 130 | ns | Analog delay for detection VDS short circuit | D | |||
Low-side Gate Drive Voltage | VLOOUTLO | — | 7.8 | — | — | — | VVDH > 5.1V | B | |||
VLOOUTTYP | — | 11.5 | — | 12.5 | V | VVDH > 13.8V | B | ||||
High-side Gate Drive Voltage | VHIOUTLO | — | 7.1 | — | — | V | VVDH > 5.1V, VVG > 7.8V | B | |||
VHIOUTTYP | — | 10.5 | — | — | V | VVDH > 13.8V, VVG > 11.5V | B | ||||
DAC | |||||||||||
VVIO = 3.3V: ATA6847-3333, ATA6847-5033 | |||||||||||
Resolution | — | — | — | 7 | — | bits | D | ||||
Current Limitation Comparator Reference DAC Output Voltage Range | VDACRANGE | — | 0.35 | — | 2.97 | V | C | ||||
Current Limitation Comparator Reference DAC Output Voltage | VDACd0 | — | — | 0.35 | — | V | DAC = d0 | A | |||
VDACd31 | — | — | 0.99 | — | V | DAC = d31 | B | ||||
VDACd63 | — | — | 1.65 | — | V | DAC = d63 | B | ||||
VDACd127 | — | — | 2.97 | — | V | DAC = d127 | A | ||||
Differential Nonlinearity | DNL | — | -50% | — | +50% | LSB | C | ||||
Integral Nonlinearilty | INL | — | -0.5% | — | 0.5% | FSR | FSR = Full Scale Range | C | |||
Input to Output Delay | tdelay | — | — | — | 50 | µs | C | ||||
VVIO = 5V: ATA6847-5050 | |||||||||||
Resolution | — | — | — | 7 | — | bits | D | ||||
Current Limitation Comparator Reference DAC Output Voltage Range | VDACRANGE | — | 0.53 | — | 4.5 | V | C | ||||
Current Limitation Comparator Reference DAC Output Voltage | VDACd0 | — | — | 0.53 | — | V | DAC = d0 | A | |||
VDACd31 | — | — | 1.5 | — | V | DAC = d31 | B | ||||
VDACd63 | — | — | 2.5 | — | V | DAC = d63 | B | ||||
VDACd127 | — | — | 4.5 | — | V | DAC = d127 | A | ||||
Differential Nonlinearity | DNL | — | -50% | — | +50% | LSB | C | ||||
Integral Nonlinearity | INL | — | -0.50% | — | 0.50% | FSR | C | ||||
Input to Output Delay | tdelay | — | — | — | 50 | µs | C | ||||
Current Sense Amplifier and Comparator | |||||||||||
Input Offset Voltage (Initial) | VOFS_INIT | OPPx, OPNx | -3 | 0 | +3 | mV | A | ||||
Input Offset Temperature Drift | VOFS_DRIFT | OPPx, OPNx | -1 | — | +1 | mV | 0 < VCM < 2V | C | |||
Common Mode Input Range | VIN_CM | OPPx, OPNx | -0.3 | — | +2 | V | C | ||||
Common Mode Rejection Ratio | CMRR | OPPx, OPNx | — | 80 | — | dB | 20 * log((VOUT_diff/VIN_diff) * (VIN_CM /VOUT_CM)), 10 kHz | C | |||
Current Sense Amplifier Input Resistance | RIN | OPPx, OPNx | 8.2 | — | 18 | kΩ | A | ||||
Output Voltage Range | VOPO_CMR | OPOx | 0.15 | — | VVIO – 0.15 | V | IOUT = ±200 µA | A | |||
Output Voltage Offset | VOPO_OFS | OPOx | — | VIO/16 | — | V | OFFSET = 2'b00 (default) | A | |||
OPOx | — | VIO/8 | — | V | OFFSET = 2'b01 | A | |||||
OPOx | — | VIO/4 | — | V | OFFSET = 2'b10 | A | |||||
OPOx | — | VIO/2 | — | V | OFFSET = 2'b11 | A | |||||
Gain | Av | OPOx | — | 8 | — | V/V | GAIN = 2'b00, VDIFF = ±180 mV, VVIO = 3.3V | B | |||
OPOx | — | 16 | — | V/V | GAIN = 2'b01, VDIFF = ±90 mV, VVIO = 3.3V | B | |||||
OPOx | — | 32 | — | V/V | GAIN = 2'b10, VDIFF =± 45 mV, VVIO = 3.3V | B | |||||
OPOx | — | 64 | — | V/V | GAIN = 2'b11, VDIFF = ±22.5 mV, VVIO = 3.3V | B | |||||
Settling Time | tsettle | OPOx | — | — | 300 | ns | Rise/Fall times for VDIFF = ±1V condition, settling time measured from VDIFF applied from/to 20/80% of the final value be reached, gain = 8 | A | |||
Gain Accuracy | dAv | OPOx |
-1.5 |
— | 2 |
% | GAIN = 16, GAIN = 32, GAIN = 64, | C | |||
-1.5 |
— | 4 | % | GAIN = 8 | C | ||||||
Gain Bandwidth Product of CSA OpAmp | GBWP | — | — | 40 | — | MHz | D | ||||
Input Offset Voltage Reference Buffer (Initial) | VOFS_INIT_BUF | — | -3.2 | 1 | +3.9 | mV | D | ||||
Input Offset Voltage Temperature Drift of the Reference Buffer | VOFS_DRIFT_BUF | — | -1 | — | +1 | mV | D | ||||
Current Limitation Detection Comparator Hysteresis | VOV_COMP_HYS | — | — | 10 | — | mV | C | ||||
Current Limitation Detection Comparator Common Mode Input Range | VOV_COMP_CMR | — | 0.15 | — | VVIO – 0.15 | V | C | ||||
Current Limitation Detection Comparator Input Offset | VOV_COMP_OFSET | — | -6 | — | +6 | mV | A | ||||
CSA OFF-state Leakage Current | Ileak_CSAx | OPOx | -0.5 | — | +0.5 | µA | A | ||||
CSA Start-up Time | tCSA_START | — | — | — | 20 | µs | D | ||||
Back-EMF | |||||||||||
Input to Output Delay | — | — | — | — | 500 | ns | VSHx with 500 mV steps | C | |||
BEMFx High-level Output Voltage | VBEMFx_H | BEMFx | VVIO – 0.4 | — | VVIO | V | I = -1 mA | A | |||
BEMFx Low-level Output Voltage | VBEMFx_L | BEMFx | - | — | 0.4 | V | I = 1 mA | A | |||
OFF-state Leakage Current | Ileak_BEMFx | BEMFx | -0.5 | — | +0.5 | µA | A | ||||
Back-EMF Detection Input Offset Error | SHx | -300 | — | +300 | mV | C | |||||
LIN Bus Driver | |||||||||||
Bus load conditions: 4.9V<VS<18V; Load 1 (Small): 1 nF, 1 kΩ; Load 2 (Large): 10 nF, 500Ω; CRXD = 20 pF, Load 3 (Medium): 6.8 nF, 660Ω characterized on samples | |||||||||||
Driver Recessive Output Voltage | VBUSrec | LIN | 0.9 × VVS | — | VVS | V | Load1/Load2 | A | |||
Driver-dominant Voltage | V_LoSUP | LIN | — | — | 1.2 | V | VVS = 7V; Rload = 500Ω | A | |||
Driver-dominant Voltage | V_HiSUP | LIN | — | — | 2 | V | VVS = 18V; Rload = 500Ω | A | |||
Driver-dominant Voltage | V_LoSUP_1k | LIN | 0.6 | — | — | V | VVS = 7V; Rload = 1000Ω | A | |||
Driver-dominant Voltage | V_HiSUP_1k | LIN | 0.8 | — | — | V | VVS = 18V; Rload = 1000Ω | A | |||
Pull-up Resistor to VVS | RLIN | LIN | 20 | 30 | 47 | KΩ | The serial diode is mandatory | A | |||
Voltage Drop at the Serial Diodes | VSerDiode | LIN | 0.4 | — | 1 | V | In pull-up path with Rclient. ISerDiode = 10 mA | D | |||
LIN Current Limitation VLIN = VVS_max | IBUS_LIM | LIN | 40 | 120 | 200 | mA | A | ||||
Input Leakage Current at the Receiver Including Pull-up Resistor as Specified | IBUS_PAS_dom | LIN | -1 | -0.35 | — | mA | Input leakage current VLIN = 0V; VVS = 12V | A | |||
Leakage Current LIN Recessive | IBUS_PAS_rec | LIN | — | 10 | 20 | µA | Driver off; 8V < VVS < 18V; 8V < VLIN < 18V; VLIN ≥ VVS | A | |||
Leakage Current When Control Unit Disconnected from Ground. Loss of Local Ground Must Not Affect Communication in the Residual Network. | IBUS_NO_gnd | LIN | -10 | 0.5 | 10 | µA | GND Device = VVS; VVS = 12V; 0V < VLIN < 18V | A | |||
Leakage Current at Disconnected Battery. Node Must Sustain the Current that Can Flow Under this Condition. Bus Must Remain Operational Under this Condition. | IBUS_NO_bat | LIN | — | 0.1 | 2 | µA | VS connected to ground. 0V < VLIN < 18V | A | |||
Capacitance on the LIN Pin to GND | CLIN | LIN | — | — | 20 | pF | D | ||||
Center of Receiver Threshold | VBUS_CNT | LIN | 0.475 ×VVS | 0.5 × VVS | 0.525 × VVS | V | VBUS_CNT = (Vth_dom + Vth_rec)/2 | A | |||
Receiver Dominant State | VBUSdom | LIN | -27 | — | 0.4 × VVS | V | A | ||||
Receiver Recessive State | VBUSrec | LIN | 0.6 x VVS | — | VVS | V | A | ||||
Receiver Input Hysteresis | VBUShys | LIN | 0.028× VVS | 0.1×VVS | 0.175× VVS | V | Vhys = Vth_rec – Vth_dom | A | |||
Pre-wake Detection LIN High-level Input Voltage | VLINH | LIN | VVS – 2 | — | — | V | A | ||||
Pre-wake Detection LIN Low-level Input Voltage | VLINL | LIN | — | — | VVS – 3.3 | V | Activates the LIN receiver | A | |||
SDI, SCK, NCS, NIHx, ILx, TXD (VVIO refers to the selected µC supply) | |||||||||||
High-level Input Voltage | VSDI_H, VSCK_H, VNCS_H, V NIHx_H, VILx_H, VTXD_H | SDI, SCK, NCS, NIHx, ILx, TXD | 0.7 × VVIO | — | VVIO + 0.3 | V | A | ||||
Low-level Input Voltage | VSDI_L, VSCK_L, VNCS_L, V NIHx_L, VILx_L, VTXD_L | SDI, SCK, NCS, NIHx, ILx, TXD | -0.3 | — | 0.3 × VVIO | V | A | ||||
Input Current | IIeak_SDI, IIeak_SCK, IIeak_NCS, I Ieak_NIHx, IIeak_ILx, Ileak_TXD | SDI, SCK, NCS, NIHx, ILx, TXD | -5 | — | +5 | µA | A | ||||
Pull-up Resistance on the Pins NCS, NIHx, TXD | RPU_NCS, RPU_NIHx, RPU_TXD | NCS, NIHx, TXD | 40 | 60 | 80 | kΩ | A | ||||
Pull-down Resistance on the SCK Pin, ILx | RPD_SCK, RPD_ILx | SCK, ILx | 40 | 60 | 80 | kΩ | A | ||||
SDO, RXD (V VIO refers to the selected µC supply) | |||||||||||
High-level Output Voltage | VSDO_H, V RXD_H | SDO, RXD | VVIO - 0.4 | — | — | V | I = -4 mA | A | |||
Low-level Output Voltage | VSDO_L, V RXD_L | SDO, RXD | — | — | 0.4 | V | I = 4 mA | A | |||
Off-state Leakage Current | Ileak_SDO, Ileak_RXD | SDO, RXD | -5 | — | 5 | µA | A | ||||
WAKE | |||||||||||
Input Rising Threshold | VWAKE_H_TH | WAKE | 1 | 1.6 | 2.05 | V | A | ||||
Input Falling Threshold | VWAKE_L_TH | WAKE | 0.75 | 1.05 | 1.5 | V | A | ||||
Input Hysteresis | VWAKE_HYS | WAKE | 200 | — | 600 | mV | A | ||||
WAKE Leakage Current | Ileak_WAKE | WAKE | -2 | — | +2 | µA | VLIN = VVS = 32V | A | |||
Wake Pull-up Resistor | — | — | — | 1000 | — | kΩ | A | ||||
Filter Time Delay | tlocal_wu | — | 40 | — | 180 | µs | A | ||||
NRES, NIRQ (internally pull-up to VVIO) | |||||||||||
Low-level Output Voltage | VNRESL, VNIRQL | NRES, NIRQ | — | 0.2 | 0.4 | V | INRES = 2 mA, INIRQ = 2 mA | A | |||
Watchdog Reset Time | tReset | NRES | According to the setting in the WDCR2 Register | ms | CNRES = 20 pF | B | |||||
Pull-up Resistance | RPU | NRES, NIRQ | 6.5 | 10 | 13.5 | kΩ | Diode in series with pull-up resistance, VNRES < 2V | A | |||
High-level Input Voltage | VNRES_H | NRES | 0.7 × VVIO | — | — | V | A | ||||
Low-level Input Voltage | VNRES_L | NRES | — | — | 0.3 × VVIO | V | A | ||||
Input Pulse Length | tNRES_input | NRES | 75 | — | — | µs | B | ||||
Watchdog Long Open Window | tLW | NRES | 560 | — | 700 | ms | B | ||||
Event Capture Delay Time | td_evt_cap | NIRQ | 0.9 | — | 1.1 | ms | B | ||||
Limp Home | |||||||||||
Low-level Output Voltage | VLH | LH | — | — | 0.2 | V | VVS > 4.2V, ILH = 4 mA | A | |||
Leakage Current | Ileak_LH | LH | — | — | 2 | µA | VLH < 40V | A | |||
INH | |||||||||||
Output ON Voltage | VINH_ON | INH | VVS – 0.8 | — | VVS | V | IINH = -180 µA | A | |||
Leakage Current | Ileak_INH | INH | — | — | 2 | µA | Leakage of grounded INH pin in OFF Mode | A | |||
SPI Timing | |||||||||||
Clock Cycle Time | tclk | SPI | 250 | — | — | ns | Normal/Standby | D | |||
SPI Enable Lead Time | tENLEAD | SPI | 50 | — | — | ns | Normal/Standby | D | |||
SPI Enable Lag Time | tENLAG | SPI | 50 | — | — | ns | Normal/Standby | D | |||
Clock HIGH Time | tclk_H | SPI | 125 | — | — | ns | Normal/Standby | D | |||
Clock LOW Time | tclk_L | SPI | 125 | — | — | ns | Normal/Standby | D | |||
Data Input Set-up Time | tsetup | SPI | 50 | — | — | ns | Normal/Standby | D | |||
Data Input Hold Time | thold | SPI | 50 | — | — | ns | Normal/Standby | D | |||
Data Output Valid Time | tdout_v | SPI | — | — | 50 | ns | Normal/Standby | D | |||
Chip Select Pulse Width HIGH | tNCS_pw | SPI | 250 | — | — | ns | Normal/Standby, SDO pin; CL = 20 pF | D | |||
LIN-, VDD- Timings | |||||||||||
Startup Time After Power-on | tstartup | VS | — | 2.8 | 4.7 | ms | From VVS rises above the power-on detection threshold V VS_PWRON until VVDD1 > VVDD1_UV_Clear or VVDD2 > VVDD2_UV_Clear | C | |||
Dominant Time for Wake-up via LIN Bus | tbus | LIN | 50 | 100 | 150 | µs | VLIN = 0V | A | |||
TXD Dominant Time-out Time | tto(dom)_LIN | TXD | 20 | 40 | 60 | ms | VTXD = 0V | A | |||
Duty Cycle 1 Timing parameter for proper operation at 20 kb/s | D1 | LIN | 0.396 | — | — | s/s | THRec(max) = 0.744 × VVS; THDom(max) = 0.581 × VVS; VVS = 7.0V to 18V; tBit = 50 μs; D1 = tbus_rec(min)/(2 × tBit) | A | |||
Duty Cycle 2 Timing parameter for proper operation at 20 kb/s | D2 | LIN | — | — | 0.581 | s/s | THRec(min) = 0.422 × VVS; THDom(min) = 0.284 × VVS; VVS = 7.6V to 18V; tBit = 50 μs; D2 = tbus_rec(max)/(2×tBit) | A | |||
Duty Cycle 3 Timing parameter for proper operation at 10.4 kb/s | D3 | LIN | 0.417 | — | — | s/s | THRec(max) = 0.778×VVS; THDom(max) =0.616×VVS; VVS = 7.0V to 18V; tBit = 96 μs; D3 = tbus_rec(min)/(2 × tBit) | A | |||
Duty Cycle 4 Timing parameter for proper operation at 10.4 kb/s | D4 | LIN | — | — | 0.59 | s/s | THRec(min) = 0.389 × VVS; THDom(min) = 0.251 × VVS; VVS = 7.6V to 18V; tBit = 96 μs; D4 = tbus_rec(max)/(2 × tBit) | A | |||
TXD Release Time after Dominant Time-out Detection | tDTOrel | TXD | 10 | — | 20 | µs | B | ||||
Propagation Delay of Receiver | trx_pd | RXD | — | — | 6 | µs | Receiver Electrical AC Parameters of the LIN Physical Layer LIN Receiver, RXD Load Conditions: CRXD = 20 pF; VS = 7.0V to 18V; trx_pd = max(trx_pdr, trx_pdf) | A | |||
Symmetry of Receiver Propagation Delay Rising Edge Minus Falling Edge | trx_sym | RXD | -2 | — | 2 | µs | Receiver Electrical AC Parameters of the LIN Physical Layer LIN Receiver, RXD Load Conditions: CRXD = 20 pF; VVS = 7.0V to 18V; trx_sym = trx_pdr – trx_pdf | A | |||
Temperature Protection | |||||||||||
Overtemperature Protection Shutdown Threshold | TOT_sdwn | — | 170 | 180 | 190 | °C | Junction Temperature | B | |||
Overtemperature Protection Release Threshold | TOT_release | — | 155 | 165 | 175 | °C | Junction Temperature | B | |||
Overtemperature Protection Prewarning Set Threshold | TOT_PREW_Set | — | 150 | 160 | 170 | °C | Junction Temperature | B | |||
Overtemperature Protection Prewarning Clear Threshold | TOT_PREW_Clear | — | 135 | 145 | 155 | °C | Junction Temperature | B | |||
Motor Line Diagnostic | |||||||||||
Logic High Detection Threshold | VthSHxHI | SHx | — | VVDH – 1.75 | — | V | Set MLDCR MLDEN Check MLDRR DIAG_xx | A | |||
Logic Low Detection Threshold | VthSHxLO | SHx | — | 1.75 | — | V | Set MLDCR MLDEN Check MLDRR DIAG_xx | A | |||
Sink Current | ISHxSink | SHx | 4.4 | — | 7.2 | mA | Set MLDCR SINKx and MLDCR MLDEN VSH > 3V | A | |||
Source Current | ISHxSource | SHx | 1 | — | 1.85 | mA | Set MLDCR SOURCEx MLDCR MLDEN VSH < VDH – 3V | A |
PARAMETER TYPE LEGEND: A = 100% Tested, B = 100% Tested through indirect testing or calculation, C = Characterized, not production tested, D = Simulated, not production tested