6.2 DC/AC Characteristics

All parameters valid for 4.9V ≤ VVS ≤ 32V; all voltages are defined with respect to ground; Non-Automotive, E variant: –40°C ≤ TJ ≤ 125°C; Grade 0, H Variant: –40°C ≤ TJ ≤ 150°C; Typical values are given at VVS = 13V, TJ = 25°C; unless otherwise noted.

Parameters

Symbol

Pin/s

Min.

Typ.

Max.

Unit

Conditions

Type

VS, VDH

Supply Voltage Threshold for Power-On Detection

VVS_PWRON

VS

4.2

4.55

V

VS rising

A

Supply Voltage Threshold for Power OFF Detection

VVS_PWROFF

VS

2.8

3

V

VVS falling

A

VS Undervoltage Detection Clear

VVS_UV_Clear

VS

4.6

4.9

V

VVS rising

A

VS Undervoltage Detection Set

VVS_UV_Set

VS

4.2

4.55

V

VVS falling

A

VS + VDH Quiescent Current in Deep Sleep Mode

IVS_DSLP

VS

8

12

µA

Deep Sleep mode (WAKE wake up only), overvoltage detection OFF, TJ < 25°C, VVS < 25V

A

‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎ ‎

20

µA

Deep Sleep mode (WAKE wake up only), overvoltage detection OFF, No temperature limitation, VVS < 25VA

VS + VDH Current in Sleep Mode

IVS_SLP

VS

15

35

µA

Sleep mode, (LIN wake-up and WAKE wake up), overvoltage detection OFF,

TJ < 25°C, VVS < 25V, See Figure 7-8

A

VS + VDH Current in Sleep Mode with Watchdog activated

IVS_SLP_WD

VS

35

µA

Sleep mode,

(Watchdog enabled in Sleep mode (WDSLP=1)), overvoltage detection OFF,

TJ < 25°C, VVS < 25V

C

VS Current in Standby Mode

IVS_STB

VS

80

µA

Standby mode, TJ < 25°C, LDO active, VVS < 25V

A

VS Current in Normal Mode with LIN Recessive

IVS_NORM_REC

VS

4.9

5.1

mA

Normal mode, LIN recessive, GDU Standby, 7V < VVS < 18V

A

VS Current in Normal Mode with LIN Dominant

IVS_NORM_DOM

VS

5.3

6.0

mA

Normal mode, LIN dominant, GDU Standby, 7V < VVS < 18V

A

VDH Current in Normal Mode Without Gate Driving

IVDH_GDU_STB

VDH

8.2

mA

Normal mode, GDU Standby mode, 4.2V < VVDH < 12V

A

VDH Overvoltage Detection Set

VVDH_OV_Set

VDH

32.5

34.7

V

VVDH Rising

A

VDH Overvoltage Detection Clear

VVDH_OV_Clr

VDH

32

34

V

VVDH Falling

A

VDH Current in Standby Mode

IVDH_STB

VDH

1

µA

LIN wake-up and WAKE wake up, overvoltage detection OFF

A

VDD1 5V: ATA6847-5050, ATA6847-5033

Output Voltage

VVDD1nom

VDD1

4.9

5

5.1

V

VVS > 5.5V

(IVDD1 = 0 to -100 mA DC)

A

Output Voltage at Low VS

VVDD1low

VDD1

VVS-VDx

5.1

V

3V < VVS < 5.35V, (IVDD1 = 0 to 100 mA)

A

VD1

VDD1

100

mV

3V < VVS < 5.35V, IVDD1 = 20 mA

A

VD2

VDD1

250

mV

3V < VVS < 5.35V, IVDD1 = 50 mA

A

VD3

VDD1

500

mV

3V < VVS < 5.35V, IVDD1 = 100 mA

A

Line Regulation Maximum

VVDD1line

VDD1

0.2

%

5.5V < VVS < 40V,

1mA < IVDD1 < 100 mA

A

Load Regulation Maximum

VVDD1load

VDD1

1

%

5.5V < VVS < 40V,

5 mA < IVDD1 < 100 mA

A

Power Supply Ripple Reject

PSRR

VDD1

40

60

dB

1 VPP @100 Hz, 10 kHz,

100 kHz; IVDD1 = 10 mA,

50 mA, 100 mA; VVS = 13.8V

D

Output Current Limitation

IVDD1lim

VDD1

100

145

mA

VVS = 4.9V

A

Phase Margin

PM

VDD1

35

Deg.

VVS > 5.5V, IVDD1 < 100 mA

D

Load Capacity

CVDD1

VDD1

1.87

2.2

µF

MLC capacitor

D

Ramp-up Time

tVDD1_startup

VDD1

0.5

ms

VVS > 5.5V, from enable regulator to VVDD1 = 99.5% stable value, CVDD1 = 2.7-3.9 µF,

IVDD1 = 25 mA

C

VDD1 Undervoltage Set Threshold

VVDD1_UV_Set

VDD1

4.5

4.7

V

VVDD1 falling

A

VDD1 Undervoltage Clear Threshold

VVDD1_UV_Clear

VDD1

4.6

4.8

V

VVDD1 rising

A

VDD1 Undervoltage Hysteresis

VVDD1_UV_HYS

VDD1

0.08

0.1

0.12

V

C

VDD1 IO Undervoltage Set

VVDD1_UV_IO_Set

VDD1

2.4

2.7

V

VVDD1 falling

A

VDD1 IO Undervoltage Clear

VVDD1_UV_IO_Clear

VDD1

2.5

2.8

V

VVDD1 rising

A

VDD1 IO Undervoltage Hysteresis

VVDD1_UV_IO_HYS

VDD1

0.08

0.1

0.12

V

C

Debouncing Time for Detecting VDD1 IO Undervoltage

tVDD1_UV_IO_deb

VDD1

6

54

µs

A

Output Current Foldback Corner

IVDD1_fbcorner

VDD1

105

135

mA

IC in Standby mode

A

Output Current Foldback Short Circuit Current

IVDD1_fb_sc

VDD1

30

mA

A

VDD1 Overvoltage Set

VVDD1_OV_Set

VDD1

5.5

5.68

5.85

V

A

VDD1 Overvoltage Clear

VVDD1_OV_Clear

VDD1

5.45

5.58

5.75

V

A

Debouncing Time for Detecting VDD1 Overvoltage

tVDD1_OV_deb

VDD1

6

54

µs

A

Debouncing Time for Detecting VDD1 Undervoltage

tVDD1_uv_deb

VDD1

6

54

µs

A

VDD1 5V Output Voltage Load Step

VVDD1loadStep

VDD1

-2

2

%

IVDD1 = 0 to 100 mA,

IVDD1= 100 to 0 mA Loadstep transient

C

VDD1 3.3V: ATA6847-3333

Output Voltage

VVDD1nom

VDD1

3.234

3.3

3.366

V

VVS > 3.8V, (IVDD1 = 0 to

100 mA)

A

A

Output Voltage at Low VS

VVDD1low

VDD1

VVS-VDx

3.37

V

3V < VVS < 3.7V, (IVDD1 = 0

to 100 mA)

A

VD1

VDD1

100

mV

3V < VVS < 3.7V, IVDD1 = 20 mA

A

VD2

VDD1

250

mV

3V < VVS <3.7V, IVDD1 = 50 mA

A

VD3

VDD1

500

mV

3V <VVS < 3.7V, IVDD1 = 100 mA

A

Line Regulation Maximum

VVDD1line

VDD1

0.2

%

3.8V < VVS < 40V, 1 mA < IVDD1 < 100 mA

A

Load Regulation Maximum

VVDD1load

VDD1

1

%

3.8V < VVS < 40V, 5 mA < IVDD1 < 100 mA

A

Power Supply Ripple Reject

PSRR

VDD1

40

60

dB

1 VPP @100 Hz, 10 kHz, 100 kHz; VVS = 13.8V I VDD1 = 10 mA, 50 mA, 100 mA

D

Output Current LimitationIVDD1limVDD1100

145mAVVS = 3.2VA

Phase Margin

PM

VDD1

25

Deg.

VVS > 3.8V, IVDD1 < 100 mA

D

Load Capacity

CVDD1

VDD1

1.87

2.2

µF

MLC capacitor

D

Ramp-up Time

tVDD1_startup

VDD1

0.5

ms

VIN > 3.8V, from enable regulator to VVDD = 99.5% stable value, CVDD1 = 2.2 µF,

IVDD1 = 25 mA

D

VDD1 IO Undervoltage Set

VVDD1_UV_IO_Set

VDD1

2.4

2.7

V

VVDD1 falling

A

VDD1 IO Undervoltage Clear

VVDD1_UV_IO_Clear

VDD1

2.5

2.8

V

VVDD1 rising

A

VDD1 IO Undervoltage Hysteresis

VVDD1_UV_IO_HYS

VDD1

0.08

0.1

0.12

V

C

Debouncing Time for Detecting VDD1 Interface Undervoltage

tVDD1_UV_IO_deb

VDD1

6

54

µs

A

Output Current Foldback Corner

IVDD1_fbcorner

VDD1

105

135

mA

IC in Standby mode

A

Output Current Foldback Short Circuit Current

IVDD1_fb_sc

VDD1

30

mA

A

VDD1 Overvoltage Set

VVDD1_OV_Set

VDD1

3.64

3.75

3.86

V

A

VDD1 Overvoltage Clear

VVDD1_OV_Clear

VDD1

3.54

3.65

3.76

V

A

Debouncing Time for Detecting VDD1 Overvoltage

tVDD1_OV_deb

VDD1

6

54

µs

A

VDD1 3.3V Output Voltage Load Step

VVDD1loadStep

VDD1

-2

2

%

IVDD1 = 0 to 100 mA,

IVDD1= 0 to 100 mA. Load step transient included.

C

VDD2 3.3V: ATA6847-5050, and ATA6847-5033

Output Voltage

VVDD2nom

VDD2

3.234

3.3

3.366

V

VVDD1 > 4.5V, (IVDD2 = 0 to

70 mA)

A

Output Voltage at Low VDD2

VVDD2low

VDD2

VVDD1-VDx

3.37

V

VVDD1 < 4.5V, (IVDD2 = 0 to

70 mA)

A

Regulator Drop Voltage at Low VDD1

VD1

VDD2

0.3

V

IVDD2 = 20 mA

A

VD2

VDD2

0.6

V

IVDD2 = 40 mA

A

VD3

VDD2

1.05

V

IVDD2 = 70mA

A

Line Regulation Maximum

VVDD2line

VDD2

0.2

%

4.5 V < VVDD1 < 5.5V,

1 mA < IVDD2 < 70 mA

C

Load Regulation Maximum

VVDD2load

VDD2

1.0

%

4.5 V < VVDD1 < 5.5V,

5 mA < IVDD2 < 70 mA

A

Power Supply Ripple Reject

PSRR

VDD2

40

60

dB

1 VPP @100 Hz, 10 kHz,

100 kHz;

IVDD2 = 10 mA, 50 mA, 70 mA; VVDD1 = 5V

D

Phase Margin

PM

VDD1

40

Deg.

VVS > 4.5V, IVDD2 = 70 mA

D

Output Current Limitation

IVDD2lim

VDD2

75

100

mA

A

Load Capacity

CVDD2

VDD2

1.87

2.2

µF

MLC capacitor

D

Ramp-up Time

tVDD2_startup

VDD2

0.5

ms

VIN > 4.5V, from enable regulator to VVDD = 99.5% stable value, CVDD2 = 2.7-3.9 µF,

IVDD2 = 25 mA

C

VDD2 IO Undervoltage Set

VVDD2_UV_IO_Set

VDD2

2.4

2.7

V

VVDD2 falling

A

VDD2 IO Undervoltage Clear

VVDD2_UV_IO_Clear

VDD2

2.5

2.8

V

VVDD2 rising

A

VDD2 IO Undervoltage Hysteresis

VVDD2_UV_IO_HYS

VDD2

0.08

0.1

0.12

V

C

Debouncing Time for Detecting VDD2 Interface Undervoltage

tVDD2_UV_IO_deb

VDD2

6

54

µs

A

VDD2 Overvoltage Set

VVDD2_OV_Set

VDD2

3.64

3.75

3.86

V

A

VDD2 Overvoltage Clear

VVDD2_OV_Clear

VDD2

3.54

3.65

3.76

V

A

Debouncing Time for Detecting VDD2 Overvoltage

tVDD2_OV_deb

VDD2

6

54

µs

A

VDD2 3.3V Output Voltage Load Step

VVDD2loadStep

VDD2

-2

2

%

IVDD2 = 0 to 70 mA,

IVDD2 = 70 to 0 mA.

Load step.

C

VG Regulator (regulated charge pump)

VG Output Voltage

VVG

VG

11.5

12

12.5

V

VVDH > VCP_STOP, IVG < 30 mA

B

VG Output Voltage

VVG

VG

7.8

V

VVDH > 5.1V, IVG < 21 mA

A

Charge Pump Start

VCP_START

VDH

12.5

13.3

V

VVDH falling

A

Charge Pump Stop

VCP_STOP

VDH

13

13.8

V

VVDH rising

A

Charge Pump Frequency

fCP_VG

CPN1, CPN2

360

380

400

kHz

VVDH < 13V

A

Output Current Limit

ILIM_VG

35

60

85

mA

A

Line Regulation Maximum

VVGline

VG

0.2

%

13.8V ≤ VVDH < 36V,

1 mA < IVG < 30 mA

B

Load Regulation Maximum

VVGload

VG

0.5

%

13.8V ≤ VVDH < 36V,

5 mA < IVG < 30 mA

B

Power Supply Ripple Reject

PSRR

VG

30

60

dB

1 VPP @100 Hz, 10 kHz,

100 kHz; IVG = 1 mA, 10 mA,

30 mA; VVS > 13.8V

D

Phase Margin

PM

VG

35

Deg.

VVDH ≥ 13.8V, IVDD1 <

30 mA

D

VCP Charge Pump

A

Charge Pump Output Voltage

VVCP

VCP

12.2

V

VVDH > 5.1V, VVG > 7.8V, IVCP = 10.6 mA

A

Charge Pump Output Voltage

VVCP

VCP

24

V

VVDH > 13.8V, VVG > 11.5V, IVCP = 15 mA

B

Gate Drive Unit

Output Driver Source Resistance

Rsource

GH/Lx

27

Ω

IGHx/IGLx = 100 mA

A

Output Driver Sink Resistance

Rsink

GH/Lx

10

Ω

IGHx/IGLx = -100 mA

A

Rising Edge Propagation Delay

tdel_r

GH/Lx

240

ns

Cload = 0,

NIHx 30% to VGHx-VSHx or ILx 70% to VGLx - V GND(ATA6847)or VGLx - VSL(ATA6847L) ,

reaches 10% of final VGS

level (slew rate control disabled)

C

Falling Edge Propagation Delay

tdel_f

GH/Lx

240

ns

Cload = 0,

NIHx 70% to VGHx - VSHx or ILx 30% to VGLx - V GND(ATA6847)or VGLx - VSL(ATA6847L) ,

reaches 90% of final VGS

level (slew rate control disabled)

C

Propagation Delay Mismatch

tdel_mis

GHx,

GLx

0

100

ns

Absolute high-side edge and low-side edge propagation delay mismatch

C

050nsAbsolute high-side edge and low-side edge propagation delay mismatch in complementary mode

C

Slew Rate Control

SR100

GH/Lx

100%

full speed

HSSRC/LSSRC = 2'b00

A

SR50

GH/Lx

50%

full speed

HSSRC/LSSRC = 2'b01

A

SR25

GH/Lx

25%

full speed

HSSRC/LSSRC = 2'b10

A

SR125

GH/Lx

12.50

%

full speed

HSSRC/LSSRC = 2'b11

A

VGS Undervoltage Detection Clear

VVGS_UV_Clear_H

GH/Lx

6.1

6.55

V

Higher level selected, UVVGSLVL = 1'b1

A

VGS Undervoltage Detection Clear

VVGS_UV_Clear_L

GH/Lx

4.6

4.9

V

Lower level selected, UVVGSLVL = 1'b0

A

VGS Undervoltage Detection Set

VVGS_UV_Set_H

GH/Lx

5.6

6.0

V

Higher level selected, UVVGSLVL = 1'b1

A

VGS Undervoltage Detection Set

VVGS_UV_Set_L

GH/Lx

4.2

4.55

V

Lower level selected, UVVGSLVL = 1'b0

A

Short Circuit Detection Voltage Threshold Range (Drain-Source Monitoring)

VSC_TH

VDH, SHx, GND (ATA6847) or SL (ATA6847L)

See SCPCR Register

mV

Configurable via SPI

A

Short Circuit Detection Reference Voltage Accuracy (Drain-Source Monitoring)

dVSC_TH500

VDH, SHx, GND (ATA6847) or SL (ATA6847L)

-5%

5%

VSC_TH ≥ 500 mV

B

dVSC_TH250

-8%

8%

VSC_TH = 250 mV

B

dVSC_TH125

-15%

15%

VSC_TH = 125 mV, TJ < 25°C

B
-15%25%VSC_TH = 125 mV B

VDS Voltage Blanking Time

tVDS_Blank

GH/Lx

See GDUCR2 Register

µs

Configurable via SPI

B

VGS Undervoltage Voltage Detection Blanking Time

tVGS_UV_Blank

GH/Lx

See GDUCR2 Register

µs

Configurable via SPI

B

VGS Undervoltage Voltage Detection Blanking Time Accuracy

dtVGS_UV_Blank

GH/Lx

-10%

10%

B

VGS Undervoltage Voltage Detection Add-on Blanking Time in GDU Standby Mode

tVGS_UV_Blank_ADO

GH/Lx

2000

µs

B

Current Limitation Detection Blanking Time

tOC_BT

GH/Lx

See ILIMCR Register

µs

Configurable via SPI

B

Current Limitation Detection Blanking Time Accuracy

dtOC_BT

GH/Lx

-5%

5%

B

Edge Blanking Time

tEG_Blank

GH/Lx

See GDUCR2 Register

µs

Configurable via SPI

B

Edge Blanking Time Accuracy

dtEG_Blank

GH/Lx

-5%

5%

B

Cross Conduction Protection Time

tCC

GH/Lx

See GDUCR1 Register

µs

Configurable via SPI

B

Cross Conduction Protection Time Accuracy

dtCC

GH/Lx

-5%

5%

B

Adaptive Deadtime High-side ON Delay Time Range

tHON_DEL

See GDUCR3 Register

ns

Configurable via SPI

A

Adaptive Deadtime High-side ON Delay Time Range Accuracy

dtHON_DEL

-5%

5%

A

Adaptive Deadtime Low-side ON Delay Time Range

tLON_DEL

See GDUCR3 Register

ns

Configurable via SPI

A

Adaptive Deadtime Low-side ON Delay Time Range Accuracy

dtLON_DEL

-5%

5%

A

Adaptive Deadtime Force to Switch Delay Time

tSWTO

See GDUCR2 Register

ns

Configurable via SPI

A

Adaptive Deadtime Force to Switch Delay Time Accuracy

dtSWTO

-5%

5%

A

Low-side Gate-Source Threshold Voltage for Low-side Gate OFF Detection

VLOOFF

GLx / SL (ATA6847L) or GND (ATA6847)

1.6

1.8

2

V

C

Low-side Drain-Source Threshold Voltage for High-side Gate OFF Detection

VSWTH

SHx

1.6

1.8

2

V

C

VDS Short Circuit Detection Delay

tVDS_DEL

130

ns

Analog delay for detection VDS short circuit

D

Low-side Gate Drive Voltage

VLOOUTLO

7.8

VVDH > 5.1V

B

VLOOUTTYP

11.5

12.5

V

VVDH > 13.8V

B

High-side Gate Drive Voltage

VHIOUTLO

7.1

V

VVDH > 5.1V, VVG > 7.8V

B

VHIOUTTYP

10.5

V

VVDH > 13.8V, VVG > 11.5V

B

DAC

VVIO = 3.3V: ATA6847-3333, ATA6847-5033

Resolution

7

bits

D

Current Limitation Comparator

Reference DAC Output Voltage Range

VDACRANGE

0.35

2.97

V

C

Current Limitation Comparator Reference DAC Output Voltage

VDACd0

0.35

V

DAC = d0

A

VDACd31

0.99

V

DAC = d31

B

VDACd63

1.65

V

DAC = d63

B

VDACd127

2.97

V

DAC = d127

A

Differential Nonlinearity

DNL

-50%

+50%

LSB

C

Integral Nonlinearilty

INL

-0.5%

0.5%

FSR

FSR = Full Scale Range

C

Input to Output Delay

tdelay

50

µs

C

VVIO = 5V: ATA6847-5050

Resolution

7

bits

D

Current Limitation Comparator Reference DAC Output Voltage Range

VDACRANGE

0.53

4.5

V

C

Current Limitation Comparator Reference DAC Output Voltage

VDACd0

0.53

V

DAC = d0

A

VDACd31

1.5

V

DAC = d31

B

VDACd63

2.5

V

DAC = d63

B

VDACd127

4.5

V

DAC = d127

A

Differential Nonlinearity

DNL

-50%

+50%

LSB

C

Integral Nonlinearity

INL

-0.50%

0.50%

FSR

C

Input to Output Delay

tdelay

50

µs

C

Current Sense Amplifier and Comparator

Input Offset Voltage (Initial)

VOFS_INIT

OPPx, OPNx

-3

0

+3

mV

A

Input Offset Temperature Drift

VOFS_DRIFT

OPPx, OPNx

-1

+1

mV

0 < VCM < 2V

C

Common Mode Input Range

VIN_CM

OPPx, OPNx

-0.3

+2

V

C

Common Mode Rejection Ratio

CMRR

OPPx, OPNx

80

dB

20 * log((VOUT_diff/VIN_diff) * (VIN_CM /VOUT_CM)), 10 kHz

C

Current Sense Amplifier Input Resistance

RIN

OPPx, OPNx

8.2

18

A

Output Voltage Range

VOPO_CMR

OPOx

0.15

VVIO – 0.15

V

IOUT = ±200 µA

A

Output Voltage Offset

VOPO_OFS

OPOx

VIO/16

V

OFFSET = 2'b00 (default)

A

OPOx

VIO/8

V

OFFSET = 2'b01

A

OPOx

VIO/4

V

OFFSET = 2'b10

A

OPOx

VIO/2

V

OFFSET = 2'b11

A

Gain

Av

OPOx

8

V/V

GAIN = 2'b00, VDIFF = ±180 mV, VVIO = 3.3V

B

OPOx

16

V/V

GAIN = 2'b01, VDIFF = ±90 mV, VVIO = 3.3V

B

OPOx

32

V/V

GAIN = 2'b10, VDIFF =± 45 mV, VVIO = 3.3V

B

OPOx

64

V/V

GAIN = 2'b11, VDIFF = ±22.5 mV, VVIO = 3.3V

B

Settling Time

tsettle

OPOx

300

ns

Rise/Fall times for

VDIFF = ±1V condition, settling time measured from VDIFF applied from/to 20/80% of the final value be reached, gain = 8

A

Gain Accuracy

dAv

OPOx

-1.5

2

%

GAIN = 16, GAIN = 32,

GAIN = 64,

C

-1.5

4

%

GAIN = 8

C

Gain Bandwidth Product of CSA OpAmp

GBWP

40

MHz

D

Input Offset Voltage Reference Buffer (Initial)

VOFS_INIT_BUF

-3.2

1

+3.9

mV

D

Input Offset Voltage Temperature Drift of the Reference Buffer

VOFS_DRIFT_BUF

-1

+1

mV

D

Current Limitation Detection Comparator Hysteresis

VOV_COMP_HYS

10

mV

C

Current Limitation Detection Comparator Common Mode Input Range

VOV_COMP_CMR

0.15

VVIO – 0.15

V

C

Current Limitation Detection Comparator Input Offset

VOV_COMP_OFSET

-6

+6

mV

A

CSA OFF-state Leakage Current

Ileak_CSAx

OPOx

-0.5

+0.5

µA

A

CSA Start-up Time

tCSA_START

20

µs

D

Back-EMF

Input to Output Delay

500

ns

VSHx with 500 mV steps

C

BEMFx High-level Output Voltage

VBEMFx_H

BEMFx

VVIO – 0.4

VVIO

V

I = -1 mA

A

BEMFx Low-level Output Voltage

VBEMFx_L

BEMFx

-

0.4

V

I = 1 mA

A

OFF-state Leakage Current

Ileak_BEMFx

BEMFx

-0.5

+0.5

µA

A

Back-EMF Detection Input Offset Error

SHx

-300

+300

mV

C

LIN Bus Driver

Bus load conditions: 4.9V<VS<18V; Load 1 (Small): 1 nF, 1 kΩ; Load 2 (Large): 10 nF, 500Ω; CRXD = 20 pF, Load 3 (Medium): 6.8 nF, 660Ω characterized on samples

Driver Recessive Output Voltage

VBUSrec

LIN

0.9 × VVS

VVS

V

Load1/Load2

A

Driver-dominant Voltage

V_LoSUP

LIN

1.2

V

VVS = 7V; Rload = 500Ω

A

Driver-dominant Voltage

V_HiSUP

LIN

2

V

VVS = 18V; Rload = 500Ω

A

Driver-dominant Voltage

V_LoSUP_1k

LIN

0.6

V

VVS = 7V; Rload = 1000Ω

A

Driver-dominant Voltage

V_HiSUP_1k

LIN

0.8

V

VVS = 18V; Rload = 1000Ω

A

Pull-up Resistor to VVS

RLIN

LIN

20

30

47

The serial diode is mandatory

A

Voltage Drop at the Serial Diodes

VSerDiode

LIN

0.4

1

V

In pull-up path with Rclient. ISerDiode = 10 mA

D

LIN Current Limitation VLIN = VVS_max

IBUS_LIM

LIN

40

120

200

mA

A

Input Leakage Current at the Receiver Including Pull-up Resistor as Specified

IBUS_PAS_dom

LIN

-1

-0.35

mA

Input leakage current VLIN = 0V; VVS = 12V

A

Leakage Current LIN Recessive

IBUS_PAS_rec

LIN

10

20

µA

Driver off; 8V < VVS < 18V; 8V < VLIN < 18V; VLIN ≥ VVS

A

Leakage Current When Control Unit Disconnected from Ground. Loss of Local Ground Must Not Affect Communication in the Residual Network.

IBUS_NO_gnd

LIN

-10

0.5

10

µA

GND Device = VVS;

VVS = 12V; 0V < VLIN < 18V

A

Leakage Current at Disconnected Battery. Node Must Sustain the Current that Can Flow Under this Condition. Bus Must Remain Operational Under this Condition.

IBUS_NO_bat

LIN

0.1

2

µA

VS connected to ground. 0V < VLIN < 18V

A

Capacitance on the LIN Pin to GND

CLIN

LIN

20

pF

D

Center of Receiver Threshold

VBUS_CNT

LIN

0.475 ×VVS

0.5 × VVS

0.525 × VVS

V

VBUS_CNT = (Vth_dom + Vth_rec)/2

A

Receiver Dominant State

VBUSdom

LIN

-27

0.4 × VVS

V

A

Receiver Recessive State

VBUSrec

LIN

0.6 x VVS

VVS

V

A

Receiver Input Hysteresis

VBUShys

LIN

0.028× VVS

0.1×VVS

0.175× VVS

V

Vhys = Vth_rec – Vth_dom

A

Pre-wake Detection LIN

High-level Input Voltage

VLINH

LIN

VVS – 2

V

A

Pre-wake Detection LIN

Low-level Input Voltage

VLINL

LIN

VVS – 3.3

V

Activates the LIN receiver

A

SDI, SCK, NCS, NIHx, ILx, TXD (VVIO refers to the selected µC supply)

High-level Input Voltage

VSDI_H, VSCK_H, VNCS_H, V NIHx_H, VILx_H, VTXD_H

SDI, SCK, NCS, NIHx, ILx, TXD

0.7 × VVIO

VVIO + 0.3

V

A

Low-level Input Voltage

VSDI_L, VSCK_L, VNCS_L, V NIHx_L, VILx_L, VTXD_L

SDI, SCK, NCS, NIHx, ILx, TXD

-0.3

0.3 × VVIO

V

A

Input Current

IIeak_SDI, IIeak_SCK, IIeak_NCS, I Ieak_NIHx, IIeak_ILx, Ileak_TXD

SDI, SCK, NCS, NIHx, ILx, TXD

-5

+5

µA

A

Pull-up Resistance on the Pins NCS, NIHx, TXD

RPU_NCS, RPU_NIHx, RPU_TXD

NCS, NIHx, TXD

40

60

80

kΩ

A

Pull-down Resistance on the SCK Pin, ILx

RPD_SCK, RPD_ILx

SCK, ILx

40

60

80

kΩ

A

SDO, RXD (V VIO refers to the selected µC supply)

High-level Output Voltage

VSDO_H, V RXD_H

SDO, RXD

VVIO - 0.4

V

I = -4 mA

A

Low-level Output Voltage

VSDO_L, V RXD_L

SDO, RXD

0.4

V

I = 4 mA

A

Off-state Leakage Current

Ileak_SDO, Ileak_RXD

SDO, RXD

-5

5

µA

A

WAKE

Input Rising Threshold

VWAKE_H_TH

WAKE

1

1.6

2.05

V

A

Input Falling Threshold

VWAKE_L_TH

WAKE

0.75

1.05

1.5

V

A

Input Hysteresis

VWAKE_HYS

WAKE

200

600

mV

A

WAKE Leakage Current

Ileak_WAKE

WAKE

-2

+2

µA

VLIN = VVS = 32V

A

Wake Pull-up Resistor

1000

A

Filter Time Delay

tlocal_wu

40

180

µs

A

NRES, NIRQ (internally pull-up to VVIO)

Low-level Output Voltage

VNRESL, VNIRQL

NRES, NIRQ

0.2

0.4

V

INRES = 2 mA, INIRQ = 2 mA

A

Watchdog Reset Time

tReset

NRES

According to the setting in the WDCR2 Register

ms

CNRES = 20 pF

B

Pull-up Resistance

RPU

NRES, NIRQ

6.5

10

13.5

Diode in series with pull-up resistance, VNRES < 2V

A

High-level Input Voltage

VNRES_H

NRES

0.7 × VVIO

V

A

Low-level Input Voltage

VNRES_L

NRES

0.3 × VVIO

V

A

Input Pulse Length

tNRES_input

NRES

75

µs

B

Watchdog Long Open Window

tLW

NRES

560

700

ms

B

Event Capture Delay Time

td_evt_cap

NIRQ

0.9

1.1

ms

B

Limp Home

Low-level Output Voltage

VLH

LH

0.2

V

VVS > 4.2V, ILH = 4 mA

A

Leakage Current

Ileak_LH

LH

2

µA

VLH < 40V

A

INH

Output ON Voltage

VINH_ON

INH

VVS – 0.8

VVS

V

IINH = -180 µA

A

Leakage Current

Ileak_INH

INH

2

µA

Leakage of grounded INH pin in OFF Mode

A

SPI Timing

Clock Cycle Time

tclk

SPI

250

ns

Normal/Standby

D

SPI Enable Lead Time

tENLEAD

SPI

50

ns

Normal/Standby

D

SPI Enable Lag Time

tENLAG

SPI

50

ns

Normal/Standby

D

Clock HIGH Time

tclk_H

SPI

125

ns

Normal/Standby

D

Clock LOW Time

tclk_L

SPI

125

ns

Normal/Standby

D

Data Input Set-up Time

tsetup

SPI

50

ns

Normal/Standby

D

Data Input Hold Time

thold

SPI

50

ns

Normal/Standby

D

Data Output Valid Time

tdout_v

SPI

50

ns

Normal/Standby

D

Chip Select Pulse Width HIGH

tNCS_pw

SPI

250

ns

Normal/Standby, SDO pin; CL = 20 pF

D

LIN-, VDD- Timings

Startup Time After Power-on

tstartup

VS

2.8

4.7

ms

From VVS rises above the power-on detection threshold V VS_PWRON until

VVDD1 > VVDD1_UV_Clear or VVDD2 > VVDD2_UV_Clear

C

Dominant Time for Wake-up via LIN Bus

tbus

LIN

50

100

150

µs

VLIN = 0V

A

TXD Dominant Time-out Time

tto(dom)_LIN

TXD

20

40

60

ms

VTXD = 0V

A

Duty Cycle 1

Timing parameter for proper operation at 20 kb/s

D1

LIN

0.396

s/s

THRec(max) = 0.744 × VVS; THDom(max) = 0.581 × VVS; VVS = 7.0V to 18V;

tBit = 50 μs;

D1 = tbus_rec(min)/(2 × tBit)

A

Duty Cycle 2

Timing parameter for proper operation at 20 kb/s

D2

LIN

0.581

s/s

THRec(min) = 0.422 × VVS; THDom(min) = 0.284 × VVS; VVS = 7.6V to 18V;

tBit = 50 μs;

D2 = tbus_rec(max)/(2×tBit)

A

Duty Cycle 3

Timing parameter for proper operation at 10.4 kb/s

D3

LIN

0.417

s/s

THRec(max) = 0.778×VVS; THDom(max) =0.616×VVS; VVS = 7.0V to 18V;

tBit = 96 μs;

D3 = tbus_rec(min)/(2 × tBit)

A

Duty Cycle 4

Timing parameter for proper operation at 10.4 kb/s

D4

LIN

0.59

s/s

THRec(min) = 0.389 × VVS; THDom(min) = 0.251 × VVS; VVS = 7.6V to 18V;

tBit = 96 μs;

D4 = tbus_rec(max)/(2 × tBit)

A

TXD Release Time after Dominant Time-out Detection

tDTOrel

TXD

10

20

µs

B

Propagation Delay of Receiver

trx_pd

RXD

6

µs

Receiver Electrical AC Parameters of the LIN Physical Layer LIN Receiver, RXD Load Conditions: CRXD = 20 pF;

VS = 7.0V to 18V;

trx_pd = max(trx_pdr, trx_pdf)

A

Symmetry of Receiver Propagation Delay Rising Edge Minus Falling Edge

trx_sym

RXD

-2

2

µs

Receiver Electrical AC Parameters of the LIN Physical Layer LIN Receiver, RXD Load Conditions: CRXD = 20 pF;

VVS = 7.0V to 18V;

trx_sym = trx_pdr – trx_pdf

A

Temperature Protection

Overtemperature Protection Shutdown Threshold

TOT_sdwn

170

180

190

°C

Junction Temperature

B

Overtemperature Protection Release Threshold

TOT_release

155

165

175

°C

Junction Temperature

B

Overtemperature Protection Prewarning Set Threshold

TOT_PREW_Set

150

160

170

°C

Junction Temperature

B

Overtemperature Protection Prewarning Clear Threshold

TOT_PREW_Clear

135

145

155

°C

Junction Temperature

B

Motor Line Diagnostic

Logic High Detection Threshold

VthSHxHI

SHx

VVDH – 1.75

V

Set MLDCR MLDEN

Check MLDRR DIAG_xx

A

Logic Low Detection Threshold

VthSHxLO

SHx

1.75

V

Set MLDCR MLDEN

Check MLDRR DIAG_xx

A

Sink Current

ISHxSink

SHx

4.4

7.2

mA

Set MLDCR SINKx and MLDCR MLDEN

VSH > 3V

A

Source Current

ISHxSource

SHx

1

1.85

mA

Set MLDCR SOURCEx MLDCR MLDEN

VSH < VDH – 3V

A

PARAMETER TYPE LEGEND: A = 100% Tested, B = 100% Tested through indirect testing or calculation, C = Characterized, not production tested, D = Simulated, not production tested