11.1.8.13 12-bit ADC Characteristics

Table 11-61. ADC Power Supply and Voltage Reference Input Characteristics
SymbolParameterConditionsMinMaxUnit
VDDIN33Supply voltage range (VDDIN33)(1)3.03.6V
IVDDIN33Current consumption on VDDIN33(1)(2)Low speed (fS ≤ 500 kS/s

ADC_ACR.IBCTL = (00)2)

1.0mA
Full speed (fS ≤ 1 MS/s

ADC_ACR.IBCTL = (01)2)

1.8mA
VADVREFPADVREFP input voltage range2.42.55V
RADVREFPADVREFP input resistance to ground(2)ADC off7.212
ADC on1
CADVREFPRecommended decoupling capacitor on ADVREFP1μF
Note:
  1. The 12-bit ADC is powered by the VDDOUT25 regulator, which is supplied from VDDIN33.
  2. Simulation data
Table 11-62. ADC Timing Characteristics
SymbolParameterConditionsMinMaxUnit
fCKADCADC clock frequencyADC_ACR.IBCTL = (00)20.110MHz
ADC_ACR.IBCTL = (01)20.220MHz
tCONVADC conversion time(1)20tCKADC
fSSampling rate(2)ADC_ACR.IBCTL = (00)20.5MS/s
ADC_ACR.IBCTL = (01)21MS/s
tSTARTStart-up time(3)From Off to On5μs
tTRACKTrack and hold time(3)(4)300ns
Note:
  1. tCONV = tCH + tTRACK + 14 x tCKADC with tCKADC = 1 / fCKADC. The parameter tCH = 0 when the ADC operates in the same input mode (single-ended, pseudo-differential or differential) for the current conversion than for the previous one. tCH = 2 when the ADC input mode is changed to perform the current conversion.
  2. fS = 1 / tCONV
  3. Simulation data
  4. See Track and Hold Time versus Source Impedance – Sampling Rate.
Table 11-63. ADC Analog Input Characteristics
SymbolParameterConditionsMinMaxUnit
VFSAnalog input full scale range(1)ADC_CCR.DIFFx = 00VADVREFPV
ADC_CCR.DIFFx = 1-VADVREFPVADVREFPV
VINCMCommon mode input range in Differential Input mode(2)ADC_CCR.DIFFx = 10.4 x VDDANA0.6 x VDDANAV
CSADC sampling capacitance(3)3pF
CP_ADxADx input parasitic capacitance(3)(4)ADx pin configured as analog input7pF
RONInternal series resistor(3)(4)2
ZINCommon mode input impedance(3)(5)On ADx pin1 / (fS x CS)Ω
RCH30VBAT resistive attenuator impedance(3)100140
GCH30VBAT channel gain(3)0.5940.606
Note:
  1. VFS = (VADx - VGNDANA) in Single-ended mode, VFS = (VADx - VAD11) in Pseudo-differential mode, and VFS = (VADx - VADx+1) in Differential mode
  2. VINCM = (VADx + VADx+1) / 2
  3. Simulation data
  4. With respect to the equivalent model of the figure Equivalent Model of the Acquisition Path
  5. Assuming conversion on one single channel
Figure 11-46. Acquisition Path Block diagram

For tracking time calculation, during the sampling phase of the converter, this acquisition path can be reduced to the equivalent model of the following figure, where:

  • RON = RMUX + RS
  • CP_ADX = CPX + CP_MUX
Figure 11-47. Equivalent Model of the Acquisition Path

See Track and Hold Time versus Source Impedance – Sampling Rate for further details on the use of this model.

In the following table, unless otherwise specified, the specifications are provided for two speed operating ranges.

  • Source resistance = 50 Ω
  • ADC_EMR.OSR<2:0> = (000)2
  • Low-speed
    • fCKADC = 10 MHz, fS = 500 kS/s
    • ADC_ACR.IBCTL = (00)2
  • High-speed
    • fCKADC = 20 MHz, fS = 1 MS/s
    • ADC_ACR.IBCTL = (01)2
Table 11-64. Static Performance Characteristics(1)
SymbolParameterMinMaxUnit
RESADCNative ADC resolution12Bit
INLIntegral non-linearity-33LSB
DNLDifferential non-linearity-22LSB
OEOffset error(2)-74LSB
OEATOffset error in Autotest mode (ADC_EMR.ADCMODE≠0)(3)-1010LSB
GEGain error(2)-74LSB
GEATGain error in Autotest mode (ADC_EMR.ADCMODE≠0)(3)-1010LSB
Note:
  1. In this table, errors are expressed in LSB where:
    • LSB = VVREFP / 212 in Single-ended mode (ADC_CCR.DIFFx = 0)
    • LSB = VVREFP / 211 in Differential mode (ADC_CCR.DIFFx = 1)
  2. Error with respect to the best fit line method.
  3. Simulation data