58.7.11 12-bit ADC Characteristics

Table 58-52. ADC Power Supply and Voltage Reference Input Characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDANA Supply voltage range (VDDANA) 3.0 3.6 V
IVDDANA Current consumption on VDDANA(2) Low Speed – fS ≤ 500 kS/s

ADC_ACR.IBCTL = (00)2

0.7 1.0 mA
Full Speed – fS ≤ 1 MS/s

ADC_ACR.IBCTL = (01)2

1.2 1.7 mA
VADVREFP ADVREFP input voltage range(1) 2.4 VDDANA V
RADVREFP ADVREFP input resistance to ground(2) ADC on 7.2 12 kΩ
ADC off 1 MΩ
CADVREFP Recommended decoupling capacitor on ADVREFP 1 μF
Note:
  1. ADVREFN pin must be connected to the PCB ground plane.
  2. Simulation data

Table 58-53. ADC Timing Characteristics
Symbol Parameter Conditions Min Typ Max Unit
fCKADC ADC clock frequency ADC_ACR.IBCTL = (00)2 0.1 10 MHz
ADC_ACR.IBCTL = (01)2 0.2 20 MHz
tCONV ADC conversion time(1) 20 tCKADC
fS Sampling rate(2) ADC_ACR.IBCTL = (00)2 0.5 MS/s
ADC_ACR.IBCTL = (01)2 1 MS/s
tSTART Startup time(4) Off to on 5 μs
tTRACK Track and hold time(3) 300 ns
Note:
  1. tCONV = tCH + tTRACK + 14 x tCKADC with tCKADC = 1 / fCKADC. tCH = 0 when the ADC operates in the same input mode (single-ended, pseudo-differential or differential) for the current conversion than for the previous one. tCH = 2 when the ADC input mode is changed to perform the current conversion.
  2. fS = 1 / tCONV.
  3. See Track and Hold Time versus Source Impedance – Sampling Rate.
  4. Simulation data

Table 58-54. ADC Analog Input Characteristics
Symbol Parameter Conditions Min Typ Max Unit
VFS Analog input full scale range(1) ADC_CCR.DIFFx = 0 0 VADVREF V
ADC_CCR.DIFFx = 1 -VADVREF VADVREF V
VINCM Common mode input range in Differential Input mode(2) ADC_CCR.DIFFx = 1 0.4 x VDDANA 0.6 x VDDANA V
CS ADC sampling capacitance(5) 3 pF
CP_ADx ADx input parasitic capacitance(3)(5) ADx pin configured as analog input 7 pF
RON Internal series resistor(3)(5) 2 kΩ
ZIN Common mode input impedance(4)(5) On ADx pin 1 / (fS.CS)
Note:
  1. VFS = (VADx - VGNDANA) in Single-ended mode, VFS = (VADx - VAD11) in Pseudo-differential mode, and VFS = (VADx - VADx+1) in Differential mode.
  2. VINCM = (VADx + VADx+1) / 2.
  3. With respect to the equivalent model of figure Equivalent Model of the Acquisition Path.
  4. Assuming conversion on one single channel
  5. Simulation data

Figure 58-37. Acquisition Path Block Diagram

For tracking time calculation, during the sampling phase of the converter, this acquisition path can be reduced to the equivalent model provided in the following figure, where:

  • RON = RMUX + RS
  • CP_ADX = CPX + CP_MUX

Figure 58-38. Equivalent Model of the Acquisition Path

See Track and Hold Time versus Source Impedance – Sampling Rate for further details on how to use this model.

In the following table, unless otherwise specified, the specifications are given for two speed operating ranges.
  • Source resistance = 50 Ω
  • ADC_EMR.OSR<2:0> = (000)2
  • Low-speed
    • fCKADC = 10 MHz, fS = 500 kS/s
    • ADC_ACR.IBCTL = (00)2
  • High-speed
    • fCKADC = 20 MHz, fS = 1 MS/s
    • ADC_ACR.IBCTL = (01)2

Table 58-55. Static Performance Characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
RESADC Native ADC resolution 12 Bit
INL Integral non-linearity Single mode -3 +3 LSB
Differential mode(3) -2 +2 LSB
DNL Differential non-linearity Single mode -2 +2 LSB
Differential mode(3) -1 +1 LSB
OE Offset error(2) -4 4 LSB
GE Gain error(2) -4 4 LSB
Warning: ADC channels should be selected knowing that toggling the QSPI I/Os may decrease ADC channel 4 and 0 performances.
Note:
  1. In this table, errors are expressed in LSB where:
    • LSB = VADVREF / 212 in Single-ended mode (ADC_CCR.DIFFx = 0 and ADC_PDR.PDIFFx = 0)
    • LSB = VADVREF / 211 in Differential or Pseudo-differential mode (ADC_CCR.DIFFx = 1)
  2. Error with respect to the best fit line method.
  3. Simulation data