2.3.3 Detailed I/O DC Characteristics

Table 2-26. Input Capacitance
SymbolDefinitionConditionsMin.Max.Units
CINInput capacitanceVIN = 0, f = 1.0 MHz8pF
CINCLKInput capacitance on the clock pinVIN = 0, f = 1.0 MHz8pF
Table 2-27. I/O Output Buffer Maximum Resistances1 Applicable to FPGA I/O Banks
StandardDrive StrengthRPULL-DOWN

(Ω)2

RPULL-UP

(Ω)3

3.3V LVTTL / 3.3V LVCMOS2 mA100300
4 mA100300
6 mA50150
8 mA50150
12 mA2575
16 mA1750
24 mA1133
2.5V LVCMOS2 mA100200
4 mA100200
6 mA50100
8 mA50100
12 mA2550
16 mA2040
24 mA1122
1.8V LVCMOS2 mA200225
4 mA100112
6 mA5056
8 mA5056
12 mA2022
16 mA2022
1.5V LVCMOS2 mA200224
4 mA100112
6 mA6775
8 mA3337
12 mA3337
3.3V PCI/PCI-XPer PCI/PCI-X specification2575
Note:
  1. These maximum values are provided for information only. Minimum output buffer resistance values depend on VCCxxxxIOBx, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microchip website.
  2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
  3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
Table 2-28. I/O Output Buffer Maximum Resistances1—Applicable to MSS I/O Banks
StandardDrive StrengthRPULL-DOWN

(Ω)2

RPULL-UP

(Ω)3

3.3V LVTTL / 3.3V LVCMOS8 mA50150
2.5V LVCMOS8 mA50100
1.8V LVCMOS4 mA100112
1.5V LVCMOS2 mA200224
Note:
  1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on VCCxxxxIOBx, drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Microchip website.
  2. R(PULL-DOWN-MAX) = (VOLspec) / IOLspec
  3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec
Table 2-29. I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values
VCCxxxxIOBxR(WEAK PULL-UP)1

(Ω)

R(WEAK PULL-DOWN)2

(Ω)

Min.Max.Min.Max.
3.3V10k90k10k90k
2.5V11k100k12k105k
1.8V18k110k17k150k
1.5V19k150k19k180k
Note:
  1. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)
  2. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)
Table 2-30. I/O Short Currents IOSH/IOSL Applicable to FPGA I/O Banks
Drive StrengthIOSL (mA)1IOSH (mA)1
3.3V LVTTL/3.3V LVCMOS2 mA2725
4 mA2725
6 mA5451
8 mA5451
12 mA109103
16 mA127132
24 mA181268
2.5V LVCMOS2 mA1816
4 mA1816
6 mA3732
8 mA3732
12 mA7465
16 mA8783
24 mA124169
1.8V LVCMOS2 mA119
4 mA2217
6 mA4435
8 mA5145
12 mA7491
16 mA7491
1.5V LVCMOS2 mA1613
4 mA3325
6 mA3932
8 mA5566
12 mA5566
3.3V PCI/PCI-XPer PCI/PCI-X specification109103
Note:
  1. TJ = 100 °C.
Table 2-31. I/O Short Currents IOSH/IOSL Applicable to MSS I/O Banks
Drive StrengthIOSL (mA)1IOSH (mA)1
3.3V LVTTL / 3.3V LVCMOS8 mA5451
2.5V LVCMOS8 mA3732
1.8V LVCMOS4 mA2217
1.5V LVCMOS2 mA1613
Note:
  1. TJ = 100 °C

The length of time an I/O can withstand IOSH/IOSL events depends on the junction temperature. The reliability data below is based on a 3.3V, 12 mA I/O setting, which is the worst case for this type of analysis.

For example, at 100°C, the short current condition would have to be sustained for more than 2200 operation hours to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.  

Table 2-32. Duration of Short Circuit Event before Failure
TemperatureTime before Failure
–40 °C> 20 years
0 °C> 20 years
25 °C> 20 years
70 °C5 years
85 °C2 years
100 °C6 months
125 °C1 month
Table 2-33. Schmitt Trigger Input Hysteresis—Hysteresis Voltage Value (typical) for Schmitt Mode Input Buffers
Input Buffer ConfigurationHysteresis Value (typical)
3.3V LVTTL / LVCMOS / PCI / PCI-X (Schmitt trigger mode)240 mV
2.5V LVCMOS (Schmitt trigger mode)140 mV
1.8V LVCMOS (Schmitt trigger mode)80 mV
1.5V LVCMOS (Schmitt trigger mode)60 mV
Table 2-34. I/O Input Rise Time, Fall Time, and Related I/O Reliability
Input BufferInput Rise/Fall Time (min.)Input Rise/Fall Time (max.)Reliability
LVTTL/LVCMOSNo requirement10 ns120 years (110 °C)
LVDS/B-LVDS/
M-LVDS/LVPECLNo requirement10 ns110 years (100 °C)
Note:
  1. The maximum input rise/fall time is related to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Microchip SoC Products Group recommends signal integrity evaluation/characterization of the system to ensure that there is no excessive noise coupling into input signals.