39.18 Analog-to-Digital Controller (ADC) Specifications

Table 39-20. ADC AC Electrical Specifications
AC CHARACTERISTICSStandard Operating Conditions: VDD and VDDIO 2.7V to 5.5V (unless otherwise stated)

Operating temperature:

-40°C ≤ TA ≤ +85°C for Industrial

Param. No.SymbolCharacteristicsMin.Typ.Max.UnitsConditions
Device Supply
ADC_1AVDDADC Module Supply2.7 5.5V VDD = VDDIO
Reference Inputs
ADC_3VREF(1)ADC Reference Voltage 2.7AVDDV VREF = AVDD

(REFCTRL.REFSEL = 0x5)

2.4AVDD-0.6VV AVDD ≥ VREF + 0.6V

VREF = INTREF

(REFCTRL.REFSEL = 0x0)

VREF = AVDD/1.6

(REFCTRL.REFSEL = 0x1)

VREF = AVDD / 2

(REFCTRL.REFSEL = 0x2)

VREF = VREFA pin

(REFCTRL.REFSEL = 0x3)

Analog Input Range
ADC_7AFSFull-Scale Analog Input Signal RangeAVSSVREFVSingle-Ended mode
ADC_9 -VREF VREFVDifferential mode
ADC_10VCMINInput common mode voltage0.2VREF-0.2VCTRLC.R2R = 1
VREF/2 - 0.2VREF/2 + 0.2VCTRLC.R2R = 0
ADC_11TSETTLINGADC Stabilization Time10µsCTRLA.ENABLE = 1 or

CTRLA.ONDEMAND = 1

Note:
  1. ADC functional device operation with either internal or external VREF < 2.4V is functional, but not characterized. ADC will function, but with degraded accuracy of approximately ~((0.06 * 2n) / VREF) LSB’s over full scale range, where n = #bits. ADC accuracy is limited by internal VREF accuracy plus drift, MCU generated noise plus users application noise/accuracy on AVDD, AVSS.
Table 39-21. ADC Single-Ended Mode AC Electrical Specifications
AC CHARACTERISTICSStandard Operating Conditions: VDD and VDDIO 2.7V to 5.5V (unless otherwise stated)

Operating temperature:

-40°C ≤ TA ≤ +85°C for Industrial

Param. No.SymbolCharacteristicsMin.Typ.Max.UnitsConditions
Single-Ended mode ADC Accuracy(4)
SADC_11ResResolution812bitsSelectable 8-bit, 10-bit, 12-bit Resolution Ranges
SADC_13aENOB(1, 2, 4)Effective Number of bits9.4bits1 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD= 5.0V

SADC_13b9.4bits1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 3.3V
SADC_13c9.4bits1 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V
SADC_13d8.8bits1 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V
SADC_19aINL(4)Integral Nonlinearity-4.54.5LSB1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 5.0V SAMPCTRL.OFFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_19b-4.24.2LSB 1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 3.3V SAMPCTRL.OFFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_19c-4.24.2LSB1 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V SAMPCTRL.OFFCOMP = 0 and SAMPCTRL.REFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_19d-6.56.5LSB1 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V SAMPCTRL.OFFCOMP = 0 and SAMPCTRL.REFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_25aDNL(4)Differential Nonlinearity-0.991.5LSB1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 5.0V SAMPCTRL.OFFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_25b-0.991.6LSB 1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 3.3V SAMPCTRL.OFFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_25c-0.991.5LSB1 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V SAMPCTRL.OFFCOMP = 0 and SAMPCTRL.REFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_25d-0.992.1LSB1 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V SAMPCTRL.OFFCOMP = 0 and SAMPCTRL.REFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_31aGERR(4)Gain Error-13.02.7LSB1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 5.0V SAMPCTRL.OFFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_31b-16.05.0LSB 1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 3.3V SAMPCTRL.OFFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_31c-31.618.6LSB1 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V SAMPCTRL.OFFCOMP = 0 and SAMPCTRL.REFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_31d-247.589.1LSB1 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V SAMPCTRL.OFFCOMP = 0 and SAMPCTRL.REFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_37aEOFF(4)Offset Error-4247LSB1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 5.0V SAMPCTRL.OFFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_37b-3951LSB 1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 3.3V SAMPCTRL.OFFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_37c-4154LSB1 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V SAMPCTRL.OFFCOMP = 0 and SAMPCTRL.REFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_37d-3951LSB1 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V SAMPCTRL.OFFCOMP = 0 and SAMPCTRL.REFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_43aTUE(4)Total Unadjusted Error3.527LSB1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 5.0V SAMPCTRL.OFFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_43b3.130LSB 1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 3.3V SAMPCTRL.OFFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_43c3.129LSB1 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V SAMPCTRL.OFFCOMP = 0 and SAMPCTRL.REFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
SADC_43d13.7135LSB1 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V SAMPCTRL.OFFCOMP = 0 and SAMPCTRL.REFCOMP = 0, SAMPCTRL.SAMPLEN[5:0] = 3
Single-Ended Mode ADC Dynamic Performance(1,2,4)
SADC_49aSINAD(1, 2, 4)Signal-to-Noise and Distortion58dB1 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 5.0V

SADC_49b581 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 3.3V

SADC_49c581 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V
SADC_49d541 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V
SADC_51aSNR(1, 2, 4)Signal-to-Noise ratio591 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 5.0V

SADC_51b591 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 3.3V

SADC_51c591 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V
SADC_51d541 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V
SADC_53aSFDR(1, 2, 4)Spurious Free Dynamic Range631 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 5.0V

SADC_53b651 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 3.3V

SADC_53c631 MSPS, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V
SADC_53d621 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V
SADC_55aTHD (1,2,3,4)Total Harmonic Distortion-631 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 5.0V

SADC_55b-631 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 3.3V

SADC_55c-621 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V
SADC_55d-621 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V
Note:
  1. Characterized with an analog input sine wave = (FTP(max)/100). For example:, FTP(max) = 1 Msps / 100 = 10 kHz sine wave.
  2. Sine wave peak amplitude = 96% ADC_ Full Scale amplitude input with 12-bit resolution.
  3. Value taken over 7 harmonics.
  4. ADC is configured in 12 bits mode, all registers are at the reset default value unless otherwise stated.
Table 39-22. ADC Differential Mode AC Electrical Specifications
AC CHARACTERISTICSStandard Operating Conditions: VDD and VDDIO 2.7V to 5.5V (unless otherwise stated)

Operating temperature:

-40°C ≤ TA ≤ +85°C for Industrial

Param. No.SymbolCharacteristicsMin.Typ.Max.UnitsConditions
Differential Mode ADC Accuracy(4)
DADC_11ResResolution812bitsSelectable 8-bit, 10-bit, 12-bit Resolution Ranges
DADC_13aENOB(1, 2, 4)Effective Number of bits10.5bits1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 5.0V
DADC_13b10.5bits 1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 3.3V
DADC_13c10.4bits1 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V
DADC_13d9.9bits1 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V
DADC_19aINL(4)Integral Nonlinearity-2.22.2LSB1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 5.0V SAMPCTRL.OFFCOMP = 1.
DADC_19b-2.02.0LSB 1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 3.3V SAMPCTRL.OFFCOMP = 1
DADC_19c-2.22.2LSB1 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V SAMPCTRL.OFFCOMP = 1 and SAMPCTRL.REFCOMP = 1
DADC_19d-6.06.0LSB1 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V SAMPCTRL.OFFCOMP = 1 and SAMPCTRL.REFCOMP = 1
DADC_25aDNL(4)Differential Nonlinearity-0.991.2LSB1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 5.0V SAMPCTRL.OFFCOMP = 1.
DADC_25b-0.991.3LSB 1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 3.3V SAMPCTRL.OFFCOMP = 1
DADC_25c-0.991.3LSB1 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V SAMPCTRL.OFFCOMP = 1 and SAMPCTRL.REFCOMP = 1
DADC_25d-0.996.0LSB1 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V SAMPCTRL.OFFCOMP = 1 and SAMPCTRL.REFCOMP = 1
DADC_31aGERR(4)Gain Error-1.45.2LSB1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 5.0V SAMPCTRL.OFFCOMP = 1.
DADC_31b-4.07.0LSB 1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 3.3V SAMPCTRL.OFFCOMP = 1
DADC_31c-23.425.3LSB1 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V SAMPCTRL.OFFCOMP = 1 and SAMPCTRL.REFCOMP = 1
DADC_31d-237.291.6LSB1 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V SAMPCTRL.OFFCOMP = 1 and SAMPCTRL.REFCOMP = 1
DADC_37aEOFF(4)Offset Error-5.06.0LSB1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 5.0V SAMPCTRL.OFFCOMP = 1.
DADC_37b-6.08.0LSB 1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 3.3V SAMPCTRL.OFFCOMP = 1
DADC_37c-7.011.0LSB1 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V SAMPCTRL.OFFCOMP = 1 and SAMPCTRL.REFCOMP = 1
DADC_37d-6.08.0LSB1 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V SAMPCTRL.OFFCOMP = 1 and SAMPCTRL.REFCOMP = 1
DADC_43aTUE(4)Total Unadjusted Error1.85.0LSB1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 5.0V SAMPCTRL.OFFCOMP = 1.
DADC_43b1.55.4LSB 1 Msps, REFCTRL.REFSEL = 0x5 = AVDD VREF = AVDD = 3.3V SAMPCTRL.OFFCOMP = 1
DADC_43c2.110.9LSB1 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V SAMPCTRL.OFFCOMP = 1 and SAMPCTRL.REFCOMP = 1
DADC_43d5.474LSB1 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V SAMPCTRL.OFFCOMP = 1 and SAMPCTRL.REFCOMP = 1
Differential Mode ADC Dynamic Performance(1,2,4)
DADC_49aSINAD(1, 2, 4)Signal-to-Noise and Distortion64dB1 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 5.0V

DADC_49b651 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 3.3V

DADC_49c641 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V
DADC_49d611 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V
DADC_51aSNR(1, 2, 4)Signal-to-Noise ratio651 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 5.0V

DADC_51b651 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 3.3V

DADC_51c651 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V
DADC_51d611 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V
DADC_53aSFDR(1, 2, 4)Spurious Free Dynamic Range691 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 5.0V

DADC_53b711 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 3.3V

DADC_53c691 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V
DADC_53d691 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V
DADC_55aTHD(1, 2, 3, 4)Total Harmonic Distortion-701 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 5.0V

DADC_55b-701 Msps, REFCTRL.REFSEL = 0x5 = AVDD

VREF = AVDD = 3.3V

DADC_55c-691 Msps, REFCTRL.REFSEL = 0x3 = VREFA pin AVDD = 5.0V VREF = VREFA = 3.0V
DADC_55d-691 Msps, REFCTRL.REFSEL = 0x0 = INTREF AVDD = 5.0V Internal VREF = INTREF = 4.096V
Note:
  1. Characterized with an analog input sine wave = (FTP(max) / 100). For example, FTP(max) = 1 Msps / 100 = 10 kHz sine wave.
  2. Sine wave peak amplitude = 96% ADC_ Full Scale amplitude input with 12-bit resolution.
  3. Value taken over 7 harmonics.
  4. ADC is configured in 12 bits mode, all registers are at the reset default value unless otherwise stated.
Table 39-23. ADC Conversion and Sample AC Electrical Requirements
AC CHARACTERISTICSStandard Operating Conditions: VDD and VDDIO 2.7V to 5.5V (unless otherwise stated)

Operating temperature:

-40°C ≤ TA ≤ +85°C for Industrial

Param. No.SymbolCharacteristicsMin.Typ.Max.UnitsConditions
ADC Clock Requirements
ADC_57TADADC Clock Period62.56250ns
ADC_58fGCLK_ADCxADCx Module GCLK maximum input frequencyFCLK_51MHz
ADC Single-Ended Throughput Rates
ADC_59FTP(3) (Single-Ended mode)Throughput Rate (Single-Ended)1.231Msps12-bit resolution, Rsource ≤ 298 Ω,

SAMPCTRL.SAMPLEN = 0(1)

1.33310-bit resolution, Rsource ≤ 633 Ω,

SAMPCTRL.SAMPLEN = 0(1)

1.68-bit resolution, Resource ≤ 1,103 Ω,

SAMPCTRL.SAMPLEN = 0(1)

1Msps12-bit resolution, Resource ≤ 6,335Ω

SAMPCTRL.SAMPLEN = n/a(2)

1.06710-bit resolution, Resource ≤ 7,678 Ω

SAMPCTRL.SAMPLEN = n/a(2)

1.2318-bit resolution, Resource ≤ 9,556 Ω

SAMPCTRL.SAMPLEN = n/a(2)

ADC Differential Mode Throughput Rates
ADC_61FTP(3) (Differential mode)Throughput Rate (Differential mode)1.231Msps12-bit resolution, Resource ≤ 298 Ω,

SAMPCTRL.SAMPLEN = 0(1)

1.45510-bit resolution, Resource ≤ 633 Ω,

SAMPCTRL.SAMPLEN = 0(1)

1.7788-bit resolution, Resource ≤ 1,103 Ω,

SAMPCTRL.SAMPLEN = 0(1)

1Msps12-bit resolution, Resource ≤ 6,335Ω

SAMPCTRL.SAMPLEN = n/a (2)

1.14310-bit resolution, Resource ≤ 7,677 Ω

SAMPCTRL.SAMPLEN = n/a(2)

1.3338-bit resolution, Resource ≤ 9,556 Ω

SAMPCTRL.SAMPLEN = n/a(2)

Note:
  1. ADC Sample time = ((SAMPCTRL.SAMPLEN + 1) * TAD) and SAMPCTRL.OFFCOMP = 0.
  2. ADC HDW forces sample time to 4*TAD when SAMPCTRL.OFFCOMP = 1, the user SAMPCTRL.SAMPLEN is ignored.
  3. ADC Throughput Rate FTP = ((1 / ((TSAMP + TCNV) * TAD)) / (The number of user’s active analog inputs in use on the specific target ADC module)).
Table 39-24. ADC Conversion and Sample AC Electrical Requirements
AC CHARACTERISTICSStandard Operating Conditions: VDD and VDDIO 2.7V to 5.5V (unless otherwise stated)

Operating temperature:

-40°C ≤ TA ≤ +85°C for Industrial

Param. No.SymbolCharacteristicsMin.Typ.Max.UnitsConditions
ADC_63TSAMP(1,2,3)ADC Sample Time1(1)TAD12-bit resolution, TAD(min),

External Analog Input Resource ≤ 298 Ω

10-bit resolution, TAD(min),

External Analog Input Resource ≤ 633 Ω

8-bit resolution, TAD(min),

External Analog Input Resource ≤ 1,103 Ω

2(1)12-bit resolution, TAD(min),

External Analog Input Resource ≤ 2,310 Ω

10-bit resolution, TAD(min),

External Analog Input Resource ≤ 2,981 Ω

8-bit resolution, TAD(min),

External Analog Input Resource ≤ 3,921 Ω

3(1)12-bit resolution, TAD(min),

External Analog Input Resource ≤ 4,323 Ω

10-bit resolution, TAD(min),

External Analog Input Resource ≤ 5,329 Ω

8-bit resolution, TAD(min),

External Analog Input Resource ≤ 6,738 Ω

4(1,2)12-bit resolution, TAD(min),

External Analog Input Resource ≤ 6,335 Ω

10-bit resolution, TAD(min),

External Analog Input Resource ≤ 7,678 Ω

8-bit resolution, TAD(min),

External Analog Input Resource ≤ 9,556 Ω

5(1)12-bit resolution, TAD(min),

External Analog Input Resource ≤ 8,348 Ω

10-bit resolution, TAD(min),

External Analog Input Resource ≤ 10,026 Ω

8-bit resolution, TAD(min),

External Analog Input Resource ≤ 12,374 Ω

6(1)12-bit resolution, TAD(min),

External Analog Input Resource ≤ 10,361 Ω

10-bit resolution, TAD(min),

External Analog Input Resource ≤ 12,374 Ω

8-bit resolution, TAD(min),

External Analog Input Resource ≤ 15,192 Ω

250nswith SCALEDVDDCORE or SCALEDAVDD as input
10µswith INTREF as input
ADC_65TCNV(3)Conversion Time (Single-Ended mode)12TAD12-bit resolution
1110-bit resolution
98-bit resolution
ADC_67Conversion Time (Differential mode)12TAD12-bit resolution
1010-bit resolution
88-bit resolution
ADC_69CSAMPLEADC Internal Sample Cap3.2pF
ADC_71RSAMPLEADC Internal impedance1715
Note:
  1. When SAMPCTRL.OFFCOMP = 0:
    • TSAMP = (((RSAMPLE + RSOURCE) * CSAMPLE * ((Number of Bits Resolution+2) * ln(2)))) / TAD)+1 rounded down to nearest whole integer
    • User SAMPCTRL.SAMPLEN = (TSAMP - 1)
  2. When SAMPCTRL.OFFCOMP = 1:
    • TSAMP = 4 (Forced by HDW)
    • User SAMPCTRL.SAMPLEN = (n/a, Ignored by HDW)
  3. ADC Throughput Rate FTP = ((1 / ((TSAMP + TCNV) * TAD)) / (Number of user active analog inputs in use on specific target ADC module)).