46.12 XOSC32K Electrical Specifications
AC CHARACTERISTICS | Standard
Operating Conditions: VDD and VDDIO 2.7V to 5.5V (unless otherwise
stated) Operating temperature: -40°C ≤ TA ≤ +85°C for Industrial | ||||||
---|---|---|---|---|---|---|---|
Param. No. | Symbol | Characteristics | Min. | Typ. | Max. | Units | Conditions |
XOSC32K_1 | FOSC_XOSC32K | XOSC32K Oscillator Crystal Frequency | — | 32.768 | — | kHz | XIN32, XOUT32 XOSC32K.XTALEN = 1 |
XOSC32K_3 | CXIN32 | XOSC32K XIN32 parasitic pin capacitance | — | 2.9 | — | pF | — |
XOSC32K_5 | CXOUT32 | XOSC32K XOUT32 parasitic pin capacitance | — | 3.2 | — | pF | — |
XOSC32K_11 | CLOAD_X32 (2) | 32.768kz Crystal Load Capacitance | — | — | 12.5 | pF | XOSC32K.XTALEN = 1 XOSC32K.ENABLE = 1 |
XOSC32K_13 | ESR_X32 | 32.768kz Crystal ESR | — | — | 70 | kΩ | XOSC32K.XTALEN = 1 XOSC32K.ENABLE = 1 CLOAD = 12.5 pF |
XOSC32K_15 | TOSC32 | TOSC32 =
1/FOSC_XOSC32K | — | 30.5176 | — | µs | See parameter XOSC32_1 for FOSC_XOSC32K value |
XOSC32K_17 | XOSC32K_ST(1) | XOSC32K Crystal Stabilization Time | — | 16000 | (3) | TOSC32 | Crystal stabilization time only not Oscillator Ready |
XOSC32K_19 | FOSC_XCLK32 | Ext Clock Oscillator Input Freq (XIN32 pin) | — | 32.768 | — | kHz | XOSC32K.XTALEN=0 |
XOSC32K_21 | XCLK32_DC | Ext Clock Oscillator Duty Cycle | 40 | 50 | 60 | % | XOSC32K.XTALEN=0 |
XOSC32K_23 | XCLK32_FST | XIN32 Clock Fail Safe Time-out Period | — | 4*1/(ULPRC32K_1/2^OSC32KCTRL.CFDCTRL.CFDPRESC) | — | ms | — |
- This is for guidance only. A major component of crystal start-up time is based on the 2nd party crystal MFG parasitics that are outside the scope of this specification. If this is a major concern the customer would need to characterize this based on their design choices.
- CRYSTAL LOAD CAPACITOR
CALCULATION
GIVEN:
- Standard PCB trace capacitance = 1.5 pF per 12.5 mm(0.5 inches) (i.e. PCB STD TRACE W = 0.175 mm, H = 36 μm, T = 113 μm)
- Xtal PCB capacitance typical therefore ~= 2.5 pF for a tight PCB xtal layout
- For CXIN and CXOUT within
4 pF of each other, Assume CXTAL_EFF =
((CXIN+CXOUT) / 2)Note: Averaging CXIN and CXOUT will effect final calculated CLOAD value by less than 0.25pF.
EQUATION 1:
MFG CLOAD Spec = {( [CXIN + C1] * [CXOUT + C2] ) / [CXIN + C1 + C2 + CXOUT] } + estimated oscillator PCB stray capacitance
- Assuming C1 = C2 and CXIN ~= CXOUT, the formula can be further simplified and restated to solve for C1 and C2 by:
EQUATION 2: (Simplified Equation 1)
C1 = C2 = ((2 * MFG CLOAD spec) - CXTAL_EFF - (2 * PCB capacitance))
EXAMPLE ONLY:
- XTAL Mfg CLOAD Data Sheet Spec = 12 pF
- PCB XTAL trace Capacitance = 2.5 pF
- CXIN pin = 6.5 pF, CXOUT pin = 4.5 pF. Therefore CXTAL_EFF = ((CXIN+CXOUT) / 2)
CXTAL_EFF = ((6.5 + 4.5)/2) = 5.5 pF
C1 = C2 = ((2 * MFG CLOAD spec) - CXTAL_EFF - (2 * PCB capacitance))
C1 = C2 = (24 - 5.5 - (2 * 2.5))
C1 = C2 = (24 - 5.5 - 5)
C1 = C2 = 13.5 pF (Always rounded down)
C1 = C2 = 13 pF (i.e., for hypothetical example crystal external load capacitors)
User C1=C2=13 pF ≤ CLOAD_X32(max) spec
Figure 46-6. XTAL - User Selectable in OSC32KCTRL.STARTUP.